

1 Universal counterclockwise motion in human walking

2 Iñaki Echeverría-Huarte^{1*}, Claudio Feliciani², Zhigang Shi³,
3 Katsuhiro Nishinari², Angel Sánchez^{4,5}, Angel Garcimartín¹, Iker Zuriguel¹

4 ¹Departamento de Física y Matemática Aplicada, Facultad de Ciencias,
5 Universidad de Navarra, Pamplona, E-31080, Spain.

6 ²Department of Aeronautics and Astronautics, School of Engineering, The
7 University of Tokyo, Tokyo, 113-8656, Japan.

8 ³State Key Laboratory of Fire Science, University of Science and Technology of
9 China, Hefei, 230027, China.

10 ⁴Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de
11 Matemáticas, Universidad Carlos III de Madrid, Leganés, 28911, Spain.

12 ⁵Instituto de Biocomputación y Física de Sistemas Complejos (BIFI),
13 Universidad de Zaragoza, Zaragoza, 50018, Spain.

14 *Corresponding author(s). E-mail(s): iecheverriah@unav.es;
15 Contributing authors: feliciani@g.ecc.u-tokyo.ac.jp ; 17801052163@163.com;
16 tknishi@mail.ecc.u-tokyo.ac.jp; anxo@math.uc3m.es; angel@unav.es; iker@unav.es;

17 **Abstract**

18 Pedestrian walking behaviour is intrinsic to individuals, yet it is influenced by external
19 factors such as obstacles and the degree of crowding. It is precisely in crowded scenarios
20 that pedestrian interactions lead to remarkable collective motions, such as lane formation
21 or waves. Recently, the spontaneous development of collective counterclockwise motion has
22 been reported in both dense and sparse human assemblies. Here, we present five experimen-
23 tal studies of this phenomenon across diverse conditions and cultures, demonstrating that
24 counterclockwise bias is universal and originates from individual tendencies rather than from
25 collective interactions. These findings challenge the traditional view that social dynamics
26 shape pedestrian motion, highlighting the existence of an intrinsic locomotor bias. While
27 the biological roots of this behaviour remain unclear, our study deepens our understand-
28 ing of pedestrian dynamics and opens new avenues for optimising crowd management by
29 considering individual biases.

30 **Introduction**

31 Anyone who has walked along a crowded street has probably noticed that pedestrians sponta-
32 neously self-organise into lanes. The explanation for this phenomenon is straightforward: to avoid
33 collisions with people approaching head-on, individuals tend to follow others who move in the
34 same direction, eventually leading to the formation of lanes of people walking in the same direc-
35 tion [1–3]. This behaviour improves the average pedestrian flow and reduces personal discomfort
36 within the crowd, as the risk of collision is minimised. For this reason, pedestrian lane formation
37 can be seen as an example in which the crowd induces individual behavioural changes that lead
38 to an overall benefit for the group [4]. Another scenario in which collective patterns emerge is
39 when a crowd exits through a narrow passage—so small that two people cannot pass through it

40 simultaneously [5]. In this scenario, pedestrians naturally split into two alternating streams—one
41 passing through the door’s right-hand side and the other through its left-hand side. This so-called
42 “zipper effect” results in a more efficient evacuation than if they had simply formed a single file
43 and exited the room through the centre of the door [5, 6].

44 Interestingly, in both cases (cross-flow and bottleneck flow) self-organised structures form
45 owing to individual collision-avoidance manoeuvres and an unspoken mutual communication
46 between people [7]. In other words, a simple individual behaviour adopted independently by many
47 people can result in a collective behaviour that is only indirectly the outcome of each individual’s
48 action. This is what is called an “emerging phenomenon”, with examples in pedestrian dynamics
49 extending to group oscillations [8, 9], stripes [10, 11], and waves [12] observed in large, dense
50 crowds. Remarkably, all these phenomena occur without any leader orchestrating them, and
51 people are often not even aware of the pattern they are creating.

52 Furthermore, it has been argued that, under some circumstances, a seemingly collective pat-
53 tern is created (or strongly influenced) by biased preferences of the members of a crowd. For
54 example, in most countries, the lanes described earlier tend to form to the right (in the sense of
55 the march) as a result of a weak tendency for people to move rightwards when facing another
56 pedestrian [13]. Similarly, it has recently been proposed that a slight preference among right-
57 handed people to turn left when facing a wall [14] could underlie the emergence of collective
58 counterclockwise (CCW) crowd motion, both in mosh pit dancing [15] and when a crowd walks
59 freely within an arena [16].

60 In contrast to this view, our study offers a different perspective on the origins of CCW
61 motion. Through five carefully designed experimental campaigns conducted in diverse settings and
62 across different countries, we have gathered compelling evidence that challenges the conventional
63 interpretation. Rather than being an emergent property driven by interpersonal interactions
64 (possibly influenced by personal biases), our results indicate that the collective CCW turning
65 is rooted in inherent individual tendencies. As we shall see, we observed that CCW motion
66 consistently emerged even when all pedestrians roaming in an enclosed space were left-handed
67 or when their turning preference was to the right (Fig.1a). We also ruled out the possibility that
68 the cause is associated with interactions with boundaries by conducting experiments in an open
69 space (Fig.1b). Another plausible hypothesis related to interpersonal interactions—in particular,
70 to avoidance manoeuvres—suggested that such manoeuvres might trigger CCW rotation in the
71 same way as they lead to right-side lane formation in counterflows. However, the results from
72 experiments in Japan (Fig.1c), where lanes tend to form to the left side (in the sense of the
73 march) during counterflows, refuted this idea. Moreover, we excluded social or acquired cultural
74 influences (such as the CCW sense of motion in athletics tracks) by analysing the dynamics of
75 children during free play at a Japanese nursery (Fig.1d) [17]. We also disproved the possibility
76 that some unspoken social norm could be responsible for CCW motion by showing that no such
77 norm exists. Finally, we analysed single pedestrians walking alone in an enclosure, confirming that
78 this symmetry-breaking phenomenon is caused by individual behaviour, most likely biologically
79 rooted.

80 Our contribution is thus twofold. First, we provide robust experimental evidence showing that
81 the CCW bias is a universal characteristic of human locomotion, observable even in isolated trials.
82 Our findings demonstrate that the symmetry-breaking phenomenon arises from innate individual
83 predispositions, while ruling out the most obvious explanations—such as handedness, footedness,
84 and eye dominance—thus leaving the precise origins open for further investigation. Second, by
85 demonstrating that this intrinsic bias exists independently of the collective context, we deepen
86 the current understanding of pedestrian dynamics. Our findings suggest that nontrivial group
87 behaviours can originate from basic individual locomotor predispositions, opening new avenues
88 for research and practical applications in areas such as urban planning and crowd management.

89 Results

90 In this section, we present our results about the statistical properties of motion observed in each
91 experiment. By analysing the patterns and differences across different scenarios and countries,
92 we aim to uncover the underlying mechanisms driving the consistent CCW asymmetry in human
93 motion and offer explanations for its prevalence.

94 **Confined Random Motion in Spain**

95 Our first study was carried out in Spain with the aim of corroborating that CCW motion is caused
96 by a small bias in the turning preference of pedestrians when facing a wall (right-handed people
97 prefer turning towards the left [14]). Under this premise, we implemented experiments in which
98 groups of people with different handedness and turning preferences were asked to roam a 5-meter
99 radius circular arena (Fig. 1a). The turning preference of each participant was identified before the
100 group trials. To this end, each volunteer was instructed to walk along a straight line until reaching
101 a wall, execute a 180-degree turn, and return. In this way, individuals were categorized as either
102 Right-Turners (RT) or Left-Turners (LT) depending on their turning direction. Independently,
103 volunteers who were both left-handed and left-footed were categorized as Left-Dominant (LD).

104 In each experiment, participants moved freely within the arena for three 40-second intervals
105 interspersed by two phases in which they were asked to navigate to a designated point. These dis-
106 tinct movement phases are clearly identifiable by analysing the temporal evolution of the average
107 velocity of the group (inset of Fig. 2, upper panel). Free movement periods (highlighted in colour)
108 display a notably higher speed than the beginning of the experiment or the directed movement
109 phases (in grey). To quantify the directionality of rotation, we employed the polarization param-
110 eter M (see *Methods* for the definition), which quantifies the average alignment of motion of all
111 pedestrians relative to a central point [18]. At each time step, the polarization of the ensemble
112 M was computed as the average of all the individual pedestrian polarizations m_i . An example of
113 the temporal evolution of $M(t)$ is depicted in the inset of Fig. 2 (lower panel). To quantify the
114 system's net rotational tendency, we computed the time-averaged polarization \bar{M} during each
115 interval of free motion. $\bar{M} > 0$ corresponds to CCW motion, whereas $\bar{M} < 0$ indicates clockwise
116 (CW) motion.

117 As explained, it was expected that increasing the proportion of RT in the experiment would
118 favour CW rotation. But the results revealed that neither the number of participants nor the
119 proportion of RT significantly influenced \bar{M} . Instead, across all experimental conditions, \bar{M} con-
120 sistently exhibited a positive value around $\bar{M} \sim 0.2$ (Fig. 1e, orange), indicating a robust and
121 persistent CCW bias. In this sense, it is noticeable that even experiments A1 and A11 (in which
122 100% of pedestrians were right turners and left-handed, respectively) revealed a similar, positive
123 value of \bar{M} .

124 To further understand this observation, we analysed the probability density functions of M
125 (Fig. 2). Interestingly, regardless of the global density (increasing from a to c) and the RT
126 proportion, all distributions are shifted towards positive values and are unimodal with the peaks
127 centred at $M \sim 0.25$. The low proportion of $M < 0$ values implies that the system maintains
128 a constant CCW rotation. At the same time, the absence of values at $M \sim 1$ indicates that
129 the CCW motion is not a global effect involving all pedestrians. Interestingly, the distributions
130 become narrower as the number of pedestrians increase, which may suggest the existence of a
131 collective effect that boosts the stability and robustness of the CCW rotation. More importantly,
132 the overlap of all distributions obtained with the same number of pedestrians (especially for large
133 crowds) indicates that individual turning preferences have a negligible impact on the emergence
134 of CCW behaviour.

135 Next, aiming to elucidate the actual role of boundaries in the development of CCW motion, we
136 analysed the spatial distributions of density, velocity, and polarization within the arena (Fig. 3).
137 The density fields (first row, Fig. 3) show a rather homogeneous spatial distribution, yet some faint
138 circular patterns can be perceived. The velocity fields (second row, Fig. 3) reveal that the CCW
139 motion extends over the whole arena but is a little bit more pronounced near the boundaries.
140 This is further confirmed by examining the polarization fields (third row, Fig. 3). On average,
141 bluish regions are more abundant over the whole arena, but the colours are more intense near
142 the boundaries; hence suggesting a possible role of those in the development of CCW rotation.

143 **Boundary-Free Experiment in a Schoolyard**

144 From previous results, and in order to clarify if the boundaries really trigger the CCW motion
145 or just help to stabilize (and perhaps magnify) it, we designed a follow-up experiment in which
146 pedestrians walk in an open and practically unconstrained setting (Fig. 1b). This consisted of a

147 50×60 m² schoolyard in Spain, where over one hundred teenage students were gathered (see *Methods* for details). Surprisingly, despite the influence of boundaries being practically suppressed, 148 the CCW rotation persisted as reflected by the positive value of \bar{M} depicted in Fig. 1e (red). In 149 agreement with this, the analysis of the PDF(M) reveals again a unimodal distribution shifted 150 towards positive values (Fig. 4a). Interestingly, the PDF(M) is even narrower than the ones pre- 151 sented in Fig. 2, suggesting that the variable controlling the width of the distribution is the total 152 number of pedestrians; and not the density – which in this case is 6 times lower than in the 153 sparser experiments of the first scenario. 154

155 Confined Random Motion in Japan

156 After ruling out the pedestrian-boundary interactions as the origin of the CCW rotation, we 157 focused on pedestrian-pedestrian interactions as a potential driving mechanism. Pedestrian- 158 pedestrian interactions are key to various self-organizing behaviours, with lane formation in 159 bidirectional flows being a prime example [4, 19, 20]. This process arises from local coordination, 160 where individuals adjust their paths during head-on encounters to avoid collisions [21]. In Spain 161 (and most European countries), this avoidance manoeuvre is typically implemented by moving 162 towards the right-hand side [13, 22], hence leading to the symmetry breaking in lane formation. 163 After this fact, the hypothesis was that if pedestrians avoid collisions giving way by a motion 164 towards the right side (thus leaving the incoming person to the left), in the circular arena they 165 would end up moving CCW near the boundary.

166 To test this idea, we conducted experiments in Japan, a country where lanes in bidirectional 167 flows conspicuously appear on the left side, as pedestrians generally avoid others by stepping 168 to the left. First, we confirmed this left-side stepping tendency through a questionnaire where 169 participants indicated their natural avoidance direction when viewing corridor walking images 170 (see Supplementary Section A for details). We then performed new experiments in an enclosure 171 similar to the one used in Spain (Fig. 1c), and following the same methodology. Unexpectedly, the 172 positive values of M reported in Fig. 1e reveal that the CCW motion persisted, hence refuting 173 the idea of the stepping aside pedestrian manoeuvres being behind the collective development 174 of CCW motion. Indeed, $\bar{M} > 0$ in all experimental trials but one (C9 in which $\bar{M} \approx 0$), an 175 exception which we might put down to the intrinsic variability of human behaviour. Furthermore, 176 as already observed in experiments 1 and 2, the distributions of M (Fig. 4(b-c)) remain skewed 177 towards positive values and the peak (at about $M \sim 0.2$) is more marked as the number of 178 pedestrians in the arena increases; i.e. the fluctuations of M are smaller as the population size 179 grows.

180 Random Motion in a Nursery School

181 We then addressed the question of whether social rules or learned behaviours – potentially shaped 182 by sport events like athletics or cultural practices – might be the cause of the CCW collective 183 motion. To explore this option, we analysed experiments implemented in a nursery school as it 184 can be assumed that, in principle, young children are less likely to be affected by social influences 185 [23]. In these experiments, conducted by Ichikawa et al. (Fig. 1d) [17], children (about 5 years 186 old) participated in an eurhythmics activity involving free running (see *Methods* for more details). 187 Interestingly, the CCW motion not only develops as in previous scenarios, but it becomes much 188 more patent as revealed by the higher values of \bar{M} , systematically above $\bar{M} = 0.7$ (Fig. 1e, green). 189 This behaviour is corroborated by the distributions of M (Fig. 4d) which show a noticeable peak 190 near $M \sim 1$ that indicates a highly consistent and stable vortex-like motion, with all children 191 moving in unison. This suggests that children, at least in this specific activity, tend to imitate 192 their peers and end up walking in the same direction which, of course, is the CCW one.

193 Social Norm Elicitation

194 Subsequently, we considered the possibility that unknown social norms were behind the emer- 195 gence of CCW motion. We used the notion of social norm introduced by Bicchieri [24], which 196 arises from the consideration of the expectations of people about a given situation. Two kinds 197 of expectations are taken into account. Empirical expectations (often referred to as descriptive 198 norms [25]) correspond to what individuals think others in their reference group will do when

199 faced with the situation of interest. Normative expectations (also called injunctive norms) refer
200 to what individuals think the rest of their reference group expects them to do. Normative expec-
201 tations are generally accompanied by the assumption that if individuals do not conform to the
202 expected behaviour, they will be sanctioned or punished in a number of different ways. In this
203 framework, we say that a social norm in a group exists if the majority of people in the group
204 share common empirical and normative expectations, and the two types agree on the behaviour
205 to be followed. Expectations are then elicited by means of a questionnaire [26]. In our case, this
206 test was composed of three different questions which allowed us to identify the personal beliefs
207 (Q1), the empirical expectation (Q2) and the normative expectation (Q3) of participants (see
208 *Methods* below). This survey was performed in Spain with a group of 168 participants.

209 The results of this study are presented in Fig. 5. Panel (a) illustrates the hypothetical scenario
210 shown to the survey respondents, while panel (b) summarizes their responses. As can be seen, if
211 a social norm is indeed present, it would surprisingly be to move CW: nearly 40% of respondents
212 exhibited aligned empirical and normative expectations in the CW direction (i.e., Q2 and Q3
213 both indicated CW) and also reported a personal inclination to move CW (Q1), while another
214 15% of the participants also shared those expectations even if they would move in the CCW
215 direction. This must be compared to roughly 20% of respondents who expect to move CCW, while
216 approximately 25% provided conflicting answers. Therefore, we must conclude that a clear norm
217 does not exist but, in case we would accept a little bit more than the majority's expectations as
218 a norm, it surprisingly would go against the observed behaviour.

219 Individual Behaviour

220 Thus far, the analysis of collective polarization M across different experiments has demonstrated
221 the universality of the CCW rotation effect. Moreover, the distributions of M revealed that
222 this effect persists over time, with fluctuations around the average being dependent on the total
223 number of pedestrians and not on the density of them. More importantly, the absence of values
224 at $M \sim 1$ in all the systems but in the Japanese nursery school, indicates that the CCW motion
225 is not a global effect involving all pedestrians. This seems reasonable as pedestrian behaviour
226 exhibits inherent variability and, although on average the collectivity is always rotating CCW,
227 there might be individuals moving in the opposite direction.

228 To quantify this, we took advantage of our experimental capabilities, which enable precise
229 tracking of each pedestrian, and analysed individual behaviour using the individual polarization
230 parameter m_i . Unlike M , which captures collective motion, m_i quantifies each pedestrian rotation
231 pattern, providing insight into the individual behaviour. As an example, in Fig. 6(a-d) we illustrate
232 four typical trajectories from the Japan experiment together with their corresponding $\text{PDF}(m_i)$
233 (Fig. 6(e-h)). Fig. 6a displays a very stable CCW trajectory characterized by a unimodal and
234 sharply skewed distribution that peaks near $m_i \sim 1$; in much the same way, Fig. 6b corresponds
235 to a very stable CW trajectory. Fig. 6c exemplifies another type of pedestrian behaviour in which
236 the rotating direction changes during the experiment (in this case, it changes twice). Accordingly,
237 the $\text{PDF}(m_i)$ shows a bimodal distribution with two marked peaks at $m_i \sim 1$ and $m_i \sim -1$.
238 Finally, Fig. 6d shows a scenario in which the pedestrian rotates, but also performs a number of
239 straight paths that give rise to more values of m_i different from ± 1 , and therefore to a broader
240 distribution.

241 Considering the particularities of these distributions and aiming to reflect the individual
242 behaviour using a single parameter, we computed the time-averaged individual polarization (\bar{m}_i)
243 for each pedestrian. In this way, $\bar{m}_i \sim 1$ corresponds to pedestrians walking always CCW, $\bar{m}_i \sim$
244 -1 corresponds to pedestrians walking always CW, while intermediate values (and particularly,
245 those close to $\bar{m}_i \sim 0$) reflect both, pedestrians that change rotating direction as in Fig. 6c and
246 those performing straight trajectories as in Fig. 6d. In Fig. 7 we represent the distributions of
247 \bar{m}_i for all pedestrians that participated at each experiment (note that, for each experiment, we
248 combined the results obtained in different conditions). Remarkably, in all cases the distributions
249 show a notorious peak at $\bar{m}_i \sim 1$, revealing the presence of a number of people determinedly
250 walking CCW, no matter the specific conditions at which the experiment was implemented. Also,
251 the distributions suggest the existence of an analogous peak at $\bar{m}_i \sim -1$, but this is in general
252 less prominent and altogether absent in the case of the nursery school experiments.

Overall, Fig. 7 provides strong evidence of substantial individual variability in rotational behaviour. Despite this variability, in all experiments there is an important proportion of pedestrians exhibiting a determined preference for CCW rotation. Notably, this behaviour at the individual level helps to explain the main features reported for the collective polarization parameter M . In this way, the consistent positive values of M can be justified by the presence of a larger proportion of pedestrians moving CCW than CW. Similarly, the absence of a peak at $M \sim 1$ can be explained by the intrinsic variability of the pedestrian type of motion; with the exception of kids, in all cases there will be people walking CW or straight. Also, the findings reported in Fig. 7 suggest that the correlation among the sharpness of the $\text{PDF}(M)$ and the crowd size is merely a statistical effect. When the crowd is small, each value of M is computed using a small number of values of m_i , and then the fluctuations increase just for statistical reasons.

Beyond this nice correlation among the macroscopic behaviour and the individual one, the results of Fig. 7 suggest that the prevalent preference for CCW rotation is not a collective effect but an individual one. Interestingly, this hypothesis is supported by the fact that the distribution with the sharpest peak at $m \sim 1$ occurs for the scenario in which pedestrians move with more freedom; i.e. the teenagers walking in a space free of boundaries (Fig. 7b).

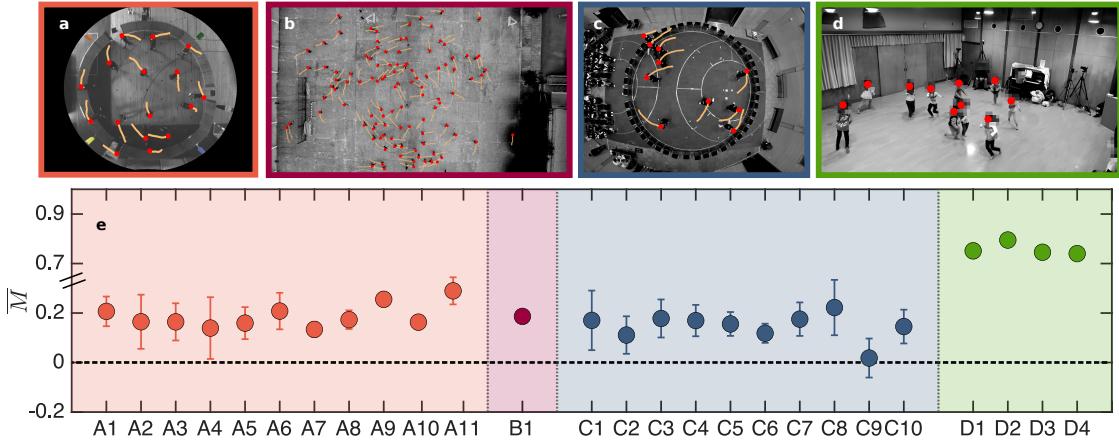
Individual Motion

Aiming to confirm that the CCW motion symmetry breaking is not caused by a collective effect but a result of individual preferences of motion, we implemented a new set of experiments in which over 200 participants walked alone (one at a time) in an enclosed arena (Fig. 8a). In these new tests, we looked for a connection between this hypothetical CCW motion preference of the individuals and some biological features, such as handedness, footedness, or eye prevalence. To this end, each participant was asked about their dominant hand, foot, and eye (left or right). If they were unsure, dominance was determined through a series of performance tests (see *Methods* for details). Participants who showed no clear dominance (i.e., were ambidextrous or had indeterminate eye preference) were excluded from the analysis. Furthermore, 49 participants were asked to walk with a patch covering the right eye, a strategy that was aimed at evaluating whether compromising the eye laterality could have a significative effect on the rotational bias.

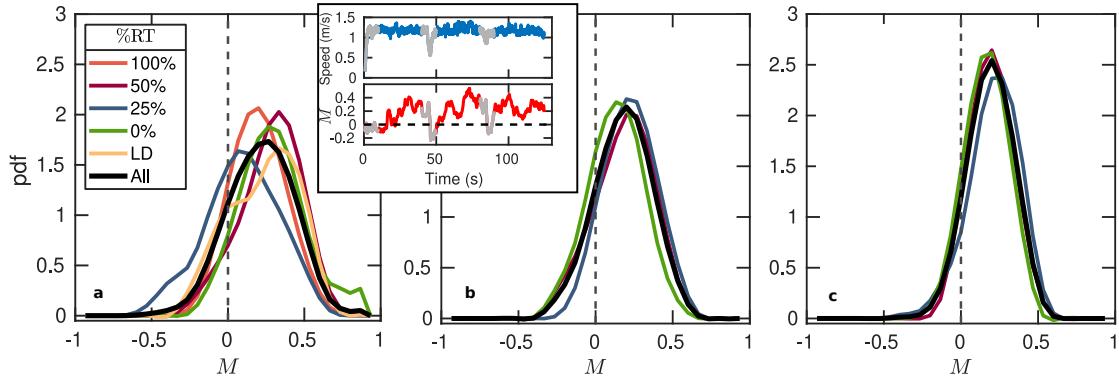
For each pedestrian, we extracted the complete trajectory within the arena (left panels of Fig. 8b) and obtained the instantaneous individual polarization $m_i(t)$. Then, we computed the probability density function of the polarization values of each individual. In the right panels of Fig. 8b, we show two examples corresponding to a pedestrian who is consistently walking CCW (top panels) and a pedestrian with several changes in the rotation direction (bottom panels). From these distributions, we calculated \bar{m}_i for each pedestrian, and then built the distributions of $\text{PDF}(\bar{m}_i)$ (as in Fig. 7) by considering all participants, irrespective of their condition. Clearly, the distribution exhibits a pronounced peak near $\bar{m}_i \sim 1$, much higher than the one at $\bar{m}_i \sim -1$. This result definitively proves that the origin of the CCW motion is not at the crowd level, but at the individual one. Interestingly, the distribution also presents a peak for values of \bar{m}_i slightly greater than 0 that is more prominent than for the individuals moving within a crowd (Fig 7). We speculate that this might be related to psychological aspects as moving in an empty space with no other pedestrians might become unengaging, hence provoking the change in the rotation direction of pedestrians as in Fig. 8b bottom panels. Anyway, the notable result of Fig. 8c is that the CCW asymmetry exists at the individual level. In order to statistically validate it, we performed a one-sample Wilcoxon signed-rank test against 0: $z = -5.63$, $n = 156$, $P < 0.001$, $r = -0.45$, 95% CI = 0.12 – 0.26. This result confirms that the median of the distribution is significantly different from 0, and therefore the CCW bias is a robust feature of individual motion.

Next, we grouped the data according to pedestrian particularities such as handedness, footedness, eye dominance, and gender. Also, we discriminated the pedestrians who were asked to use a patch over their right eye. As shown in the box plots of \bar{m}_i in Fig. 8e, the CCW bias remains consistent across all subgroups. Mann–Whitney U -tests further confirmed no significant differences in \bar{m}_i between right- and left-handed participants: $U(142, 14) = 898$, $z = -0.60$, $P = 0.554$, $r = -0.05$, 95% CI = -0.33 – 0.18, between right- and left-footed participants: $U(138, 18) = 1134$, $z = -0.60$, $P = 0.553$, $r = -0.05$, 95% CI = -0.22 – 0.10, between right- and left-eyed participants: $U(96, 60) = 2851$, $z = -0.11$, $P = 0.917$, $r = -0.01$, 95% CI = -0.15 – 0.12, or between male and female participants: $U(62, 94) = 2542$, $z = -1.35$, $P = 0.178$, $r = -0.11$, 95%

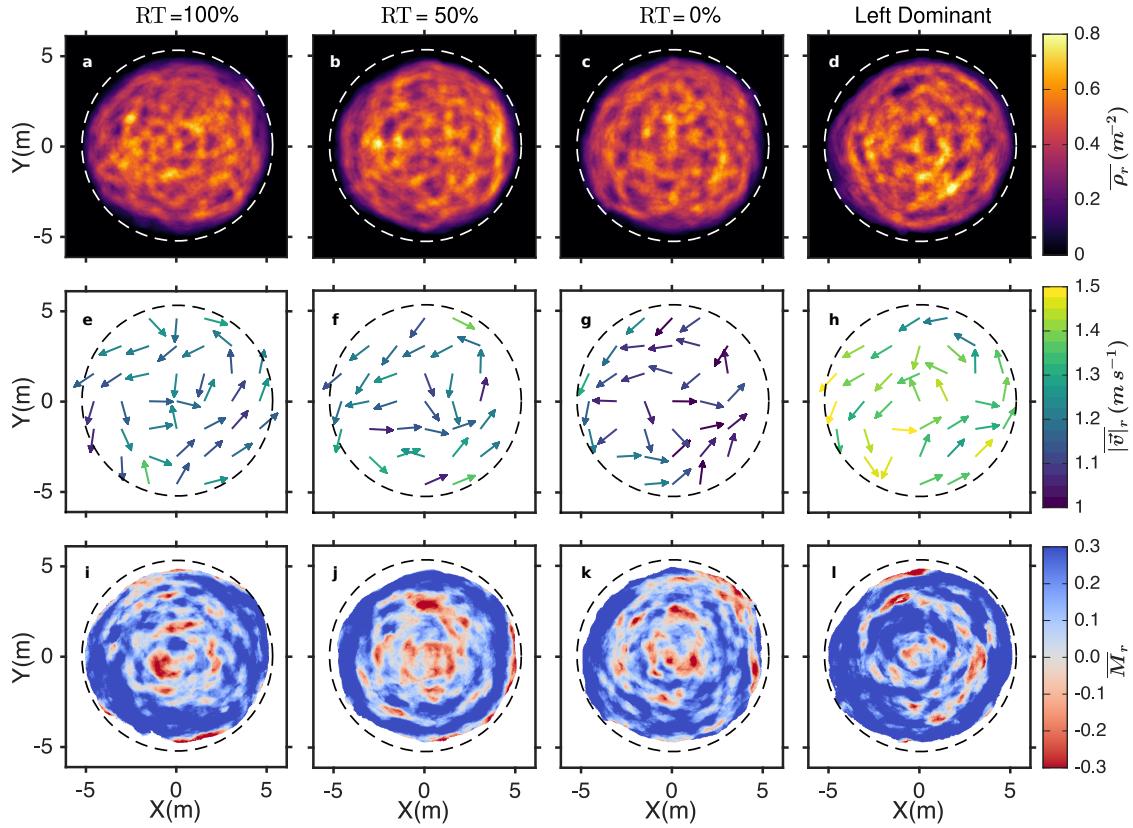
308 CI = -0.24 – 0.03. Likewise, restricting the analysis to participants with right-eye dominance
309 revealed no meaningful difference in \bar{m}_i between those who wore a patch and those who did not:
310 $U(156, 49) = 4385, z = 1.32, P = 0.188, r = 0.12, 95\% \text{ CI} = -0.05 – 0.26$.

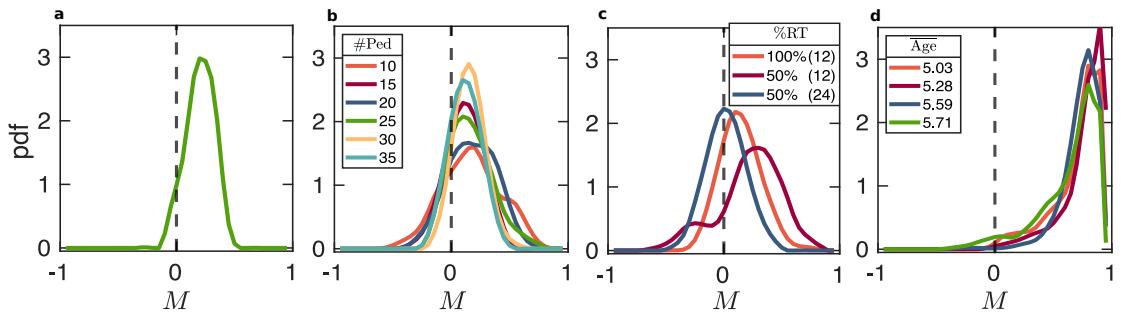

311 Together, these results support the hypothesis that the CCW motion bias arises from individual locomotion trends rather than group-level phenomena. Remarkably, this intrinsic breaking
312 of symmetry does not seem to depend on any of the laterality-related biological features considered in this study. Going a step further, we try to connect the individual motion results with
313 the distributions of collective polarization (Figs. 2 and 4) and the observed enhancement of the
314 peak with the crowd size. As was mentioned above, one could attribute this result to a collective
315 effect; however, in Fig. 8d we demonstrate that the same behaviour is obtained by constructing
316 the PDFs from randomized samples of individual pedestrians moving alone (as shown in Fig. 8b).
317 For each crowd size, we randomly select a subset of individuals and take one polarization measurement
318 from each to calculate the hypothetical group-average polarization, \tilde{M} . We repeat this process for 1000 subsets, obtaining a statistically robust distribution of \tilde{M} values as shown in
319 Fig. 8d. Importantly, from data obtained for pedestrians walking alone, we obtain synthetic
320 distributions of global polarization that peak at $\tilde{M} \sim 0.25$ and become systematically narrower as
321 the crowd size increases; exactly as it happened with the distributions of collective polarization.
322 This finding corroborates the idea that the individual preferences of motion are likely the most
323 important features observed at the collective level.

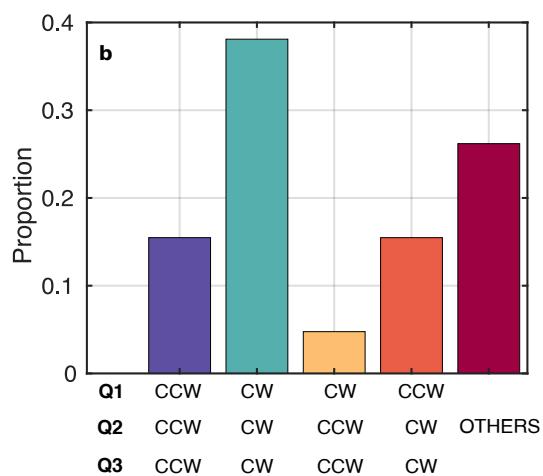
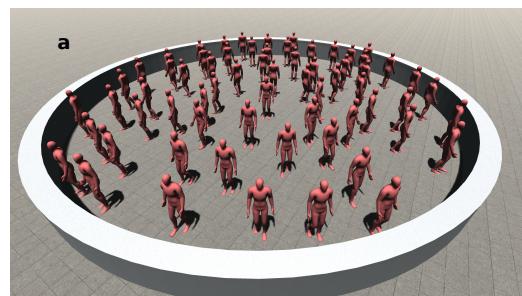
327 Discussion

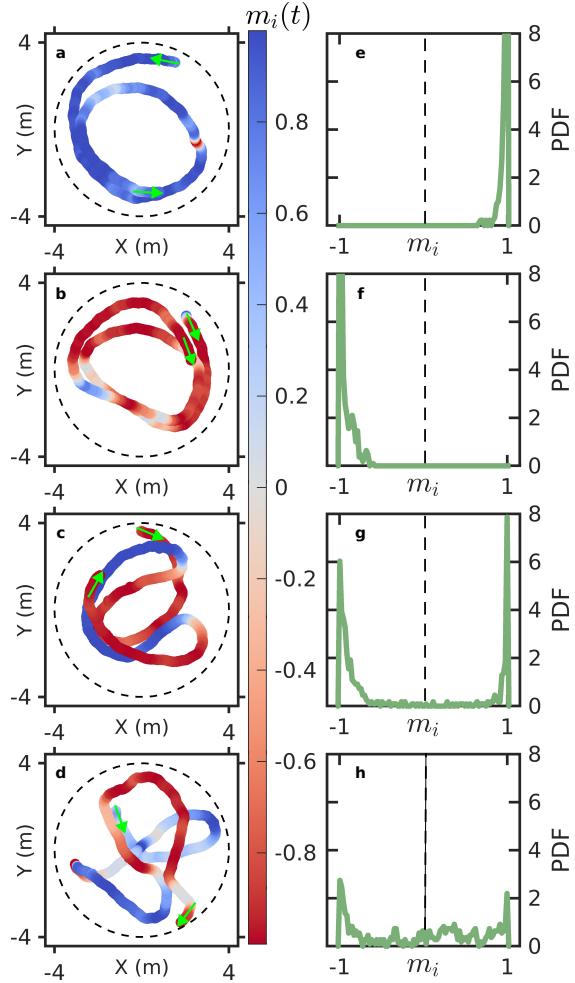

328 In this work, we have implemented a series of experimental realizations—conducted in diverse
329 conditions and across different cultural contexts—that conclusively demonstrate the universality
330 of CCW motion. Our findings are robust: regardless of crowd size, boundary effects, or laterality
331 traits such as handedness, footedness, and eye dominance, CCW motion consistently emerges.
332 This reproducibility across varied settings, including two countries with different social norms
333 and experiments with adults and children, supports the strength and reliability of our findings.

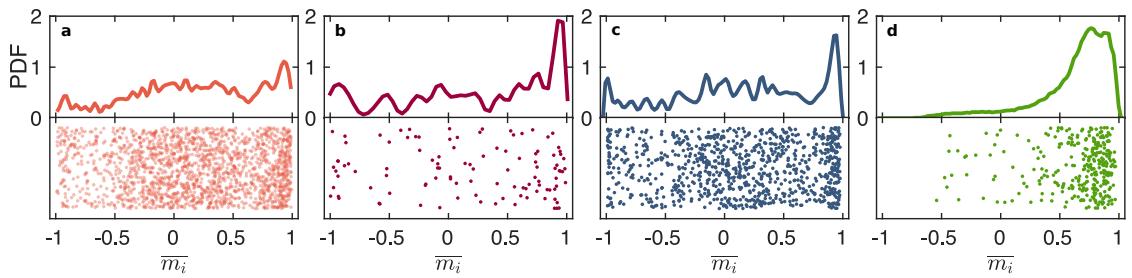
334 Traditionally, emergent collective behaviours in pedestrian dynamics have been attributed
335 solely to local interactions and social coordination [27, 28]. However, our data reveal that the
336 CCW preference does not arise from these interactions. Instead, our results indicate that this
337 symmetry-breaking phenomenon is fundamentally rooted in individual locomotor tendencies. This
338 challenges the prevailing assumption that group-level behaviours are more than the sum of individual
339 behaviours. We have even ruled out the possibility that hitherto unknown social norms
340 could be the cause of the CCW motion. Therefore, our work exemplifies an instance of crowd
341 motion which can be primarily explained without the need to resort to collective effects, nor to
342 the specificities of pedestrian interactions (among them or with the environment). Moreover, the
343 validation of our results through carefully controlled isolated trials suggests that intrinsic locomo-
344 tor predispositions are a fundamental aspect of crowd behaviour. The lack of an explanation
345 for the origin of such individual biases opens new avenues for future research aimed at unravelling
346 their biological or neurological grounds.


347 The implications of our findings are significant. By demonstrating that individual
348 biases—rather than collective effects—drive the observed CCW rotation, our study deepens our
349 understanding of pedestrian dynamics and provides a new lens for studying crowd behaviour. This
350 breakthrough refines our theoretical framework while opening promising avenues for practical
351 applications in high-traffic settings like airports, train stations, museums, and shopping centres.
352 However, further research is needed to determine whether these individual tendencies persist in
353 complex, real-world environments featuring static obstacles and varied pedestrian flows [29, 30].
354 Controlled investigations of these dynamics could ultimately enhance urban design and crowd
355 management strategies, paving the way for innovative, people-centric public spaces.


Fig. 1 Experimental setups and collective turning polarization. Panels (a–d) show snapshots of the different analysed experimental scenarios, illustrating pedestrian trajectories over the last 2 seconds (orange) and their current positions (red). (a) Confined random motion in Spain, (b) random motion of Spanish teenagers in a schoolyard, (c) confined random motion in Japan, and (d) random motion in a Japanese nursery school. Panel (e) shows the time-averaged collective polarization (\bar{M} , as defined in *Methods*) for the different experimental conditions evaluated in each scenario (see Supplementary Table I for more details). Error bars indicate the standard error of the mean.



Fig. 2 Collective rotational behaviour on confined random motion in Spain. The panels show the probability density functions (PDFs) of the collective polarization values (M), for groups with different numbers of participants: (a) 16, (b) 24, and (c) 32. Different colours (see legend) are used for crowds with different percentages of right-turners (%RT) and for the case with only Left-Dominant (LD) pedestrians. The black line represents the aggregated distribution obtained by combining data from all experimental conditions. Inset: time series of the average speed of all participants (top) and the collective polarization (bottom). The values used to generate the PDFs are the ones marked on red. Intervals covering the initial stage of the experiment and periods of directed motion towards the walls (gray in the inset), were identified by analysing the average speed, and excluded from the analysis.


Fig. 3 Density, velocity and polarization fields for varying proportions of right-turners in the Spanish confined scenario. Spatial distribution of temporally averaged density $\bar{\rho}_r$ (first row), velocity \bar{v}_r (second row), and polarization \bar{M}_r (third row) fields for a crowd of 16 pedestrians with different turning preferences as indicated at the top. The colour scales on the right (same for all cases) indicate i) the average local density in persons/m² (a-d); ii) the average speed in m/s (e-h); and iii) the average local polarization value (i-l). In (e-h) the arrows indicate the average direction of the local velocity vector. The spatial units in both the vertical and horizontal directions are metres for all plots.


Fig. 4 Probability density function (PDF) of collective polarization values (M) in different scenarios. In (a) the free-boundary motion of teenagers in Spain. In (b-c) the confined motion in Japan. In (d) the kids motion in a Japanese nursery school. In each panel, colours are used to label different experimental conditions, as described in the legends. In (a), only one experimental condition is considered. In (b), each curve corresponds to a different crowd size. In (c), both the percentage of right-turners (%RT) and the group size (12, 24) varies. In (d), four realizations with different children of slightly different age are reported.

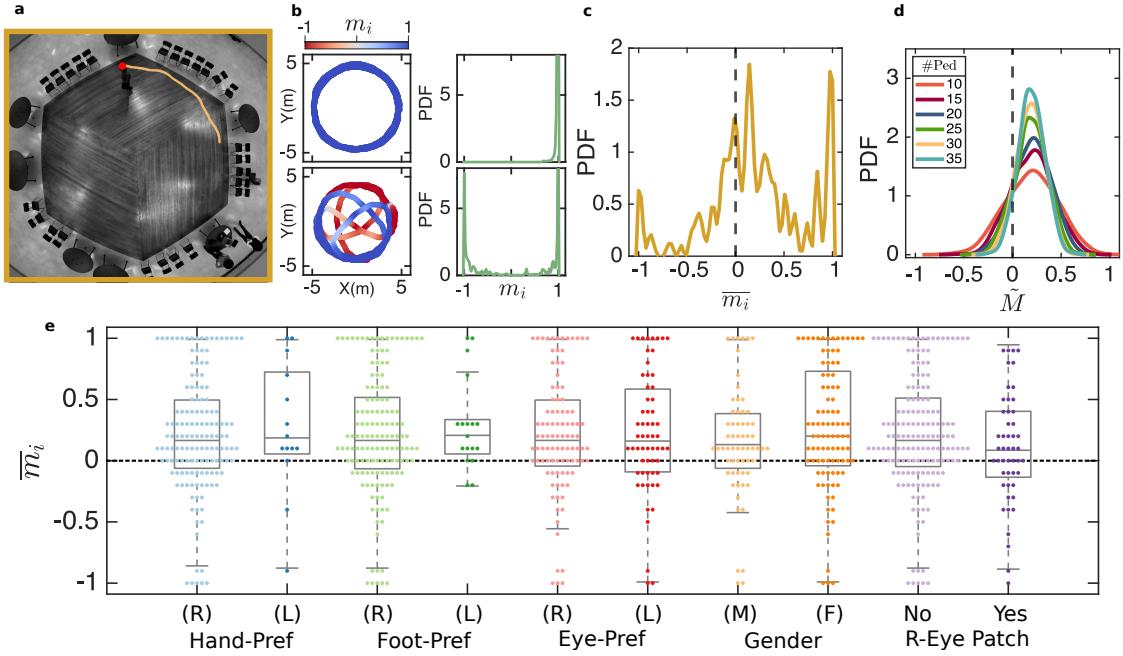

Fig. 5 Influence of Social Norms. (a) Photograph used in the survey, where participants responded to three questions (Q1, Q2, Q3) about the direction of rotation they would choose. See *Methods* for the complete survey form. (b) Proportion of responses to the survey questions. Answers, limited to CW or CCW, are grouped into three categories: (i) The same answer for all three questions (all CW or all CCW), indicating a strong influence of social norms, (ii) The same answers for Q2 and Q3 but different from Q1, suggesting a moderate influence of social norms, and (iii) Mixed answers, reflecting a weak influence of social norms.

Fig. 6 Four representative cases of individual rotational behaviour during confined motion in Japan. (a-d) Individual trajectories of four different pedestrians over 40 seconds coloured according to the instantaneous individual polarization value (m_i) (see colour bar on the right). Green arrows indicate the direction of motion at the start and end of each trajectory. Spatial units in both the vertical and horizontal directions are meters. (e-h) The corresponding probability density functions (PDFs) of m_i for each trajectory.

Fig. 7 Average polarization values for each pedestrian in the four studied scenarios. Each panel includes a stripchart at the bottom, showing the time-averaged polarization values for each pedestrian (\bar{m}_i) and the corresponding probability density function (PDF) of the whole set of these \bar{m}_i values at the top. (a) confined motion in Spain, (b) free-boundary motion of teenagers in Spain, (c) confined motion in Japan, and (d) kids motion in a Japanese nursery school.

Fig. 8 Rotational motion of individuals. (a) Snapshot of the last experimental setup, where individual pedestrians were instructed to walk alone and freely within an enclosure. The recent trajectory followed by the participant is shown in orange, with the current position marked in red. (b) The trajectories of two pedestrians over a 60-second period are depicted, with colours representing their instantaneous individual polarization m_i , as indicated by the colour scale above. On the right, the probability density functions (PDFs) of m_i for each trajectory are shown. (c) Probability density function (PDF) of the individual time-averaged polarization values (\bar{m}_i). (d) Synthetic PDF of the “collective” polarization \tilde{M} , constructed by aggregating instantaneous individual polarization values m_i randomly selected from different pedestrians at arbitrary times. Note that \tilde{M} is not a genuine collective measure, but rather a synthetic construct designed to emulate its statistical properties. (e) Box plots of \bar{m}_i of the data grouped by individual features: handedness preference (Hand-Pref), footedness preference (Foot-Pref), eye dominance (Eye-Pref), gender, and whether the right eye is patched or not (Right-Eye Patch).

356 **Methods**

357 **Experiments**

358 To investigate the underlying mechanisms contributing to the CCW bias observed in pedestrian
359 dynamics, we conducted a series of six carefully designed experiments. Each experiment was tai-
360 lored to test a specific hypothesis, ranging from the effects of physical interactions in confined
361 spaces to the influence of social norms and individual-level characteristics. The following subsec-
362 tions provide a detailed overview of the experimental setups, methodologies employed, participant
363 characteristics, and procedures implemented in each study.

364 **Confined Random Motion in Spain**

365 The first experiment was conducted at the University of Navarra, Spain. The arena was a confined
366 circular region of 5 meters radius, enclosed by 1-meter-high fences (Fig. 1a).

367 A total of 50 participants (23 men, 27 women; age 25.7 ± 4.08 years) were recruited through
368 an online form. Informed consent was obtained from all participants prior to participation. The
369 University of Navarra's ethics committee determined that its reviewing was not needed, as the
370 data were anonymized from the start—no personal information was collected, and no faces were
371 recorded during the experiments.

372 Upon arrival, each participant completed a preliminary task involving a walk along a marked
373 straight line towards a wall, turning at the wall, and returning to the starting point. This task
374 allowed us to categorize participants as left-turners (LT) or right-turners (RT) based on the direc-
375 tion of their turn. Based on this classification, we constructed different experimental conditions
376 varying the number of pedestrians inside the enclosure (global density) and distinct proportions
377 of RT. A complete description of all experimental conditions can be found in Table. I (SI).

378 The sequence of each experiment was as follows:

- 379 1. Initial Positioning: Participants positioned themselves at pre-marked starting points (black
380 crosses in the ground) looking towards one of the four coloured equidistant posts that
381 were placed outside. Importantly, the post each pedestrian was asked to look was randomly
382 determined by an individual code provided to each participant on a card.
- 383 2. First Random Phase: Following a starting signal, participants start walking for 40 seconds. At
384 the start of the experiment, they were instructed to move continuously without stopping and
385 avoiding following others. The first 10 seconds of this phase were excluded from the analysis
386 to avoid any possible transient effect.
- 387 3. Target Motion: Participants were instructed to move towards one of the four coloured posts
388 near the fence, touch the fence close to the signal, and then resume walking.
- 389 4. Second Random Phase: Random walking resumed for another 40 seconds, with the first 10
390 seconds excluded due to motion transitions following the target interaction task.
- 391 5. Repeated Target Motion: Participants were prompted to repeat the action of moving to the
392 posts (different than the previous ones).
- 393 6. Third Random Phase: Random walking continued for 40 seconds, again excluding the initial
394 10 seconds.

395 In total, three 30-second random walking intervals per experiment were analysed. Each exper-
396 imental condition was repeated twice but with different individuals, resulting in six different
397 phases of random motion to analyse.

398 All experiments were recorded using a camera mounted 10 meters above the ground, positioned
399 directly above and pointing toward the centre of the arena. The footage was captured at a
400 resolution of 4000×3000 pixels at 15 frames per second. A custom-built image analysis program
401 was used to track the positions of all pedestrians in the videos. To correct image deformation
402 caused by the camera, the positions were calibrated using approximately 40 images of a reference
403 chequerboard. Velocities were calculated over a sliding window of 0.8 seconds to ensure pedestrians
404 had moved a sufficient distance, minimizing spurious noise. A representative example of one
405 experiment is included in the Supplementary Movie 1.

406 **Teenagers in a Spanish Schoolyard**

407 The experiment was conducted at the Hijas de Jesús secondary school in Pamplona, Spain. The
408 schoolyard, measuring approximately $50 \times 60 \text{ m}^2$ (see Fig. 1d), constituted the experimental area.
409 A total of 107 students, aged 13–14 years, participated in the study. Prior to the experiment,
410 detailed explanations of the video recording and data collection procedures were provided to the
411 school principal and the students' parents. Informed consent was obtained from both the principal
412 and the parents based on distributed informational materials.

413 In accordance with the methodology used in the aforementioned studies, participants were
414 instructed to walk freely within the schoolyard, avoiding stopping or forming clusters. Initially, all
415 students were gathered in a circular region marked on the ground. After the starting signal, the
416 experiment began and lasted for 100 seconds. To avoid any potential bias due to initial positioning,
417 the first 30 seconds of the experiment were excluded from the analysis. The remaining 70 seconds
418 were used to evaluate the collective and individual rotational behaviours of the participants. The
419 same experiment was repeated twice.

420 A DJI drone was used to capture footage from a height of 40 meters. The recordings were
421 made at a resolution of 1920×1080 pixels with a frame rate of 30 fps. To stabilize the videos
422 before performing the tracking, the point feature matching approach (from OpenCV library) was
423 applied. A custom-developed image analysis program was employed to track pedestrian positions
424 and velocities. To enhance accuracy and reduce noise, velocity calculations were performed using
425 a sliding window of 0.8 seconds. A recorded trial illustrating the experiment is available in the
426 Supplementary Movie 2.

427 **Confined Random Motion in Japan**

428 The experiment was conducted at the University of Tokyo, Japan, within a circular enclosure
429 with a radius of 4 meters, delimited by chairs. A total of 39 participants (25 men and 14 women,
430 aged 26.8 ± 7.4 years) were recruited through a website [31]. All participants provided informed
431 consent, and the experimental protocol was approved by the ethical committee of the University
432 of Tokyo.

433 Similar to the protocol implemented in Spain, participants were categorized as either LT or
434 RT by asking them to perform a turn towards a wall prior to the experiments. An improvement
435 introduced in this study was repeating this assessment two other times at different moments of
436 the two-hour experiment: once during the first break and again at the conclusion. This allowed us
437 to evaluate the consistency of turning direction among participants. A high level of consistency
438 ($\sim 85\%$) was observed, with participants turning in the same direction in all three cases (see
439 Supplementary Table II for details). The experimental conditions varied in terms of global density
440 and the percentage of RT, as detailed in Table. I of the SI.

441 Each experimental trial lasted 45 seconds. Staff members first placed participants randomly
442 throughout the enclosure to ensure a broad spatial distribution. Upon hearing a sound signal,
443 they began walking randomly, as in the Spanish experiment. Another signal marked the end of the
444 trial. To avoid transient effects, the first 5 seconds of each trial were excluded from the analysis.
445 Each experimental condition was repeated four times, changing the participants included in the
446 test whenever possible.

447 The experiments were recorded using a camera mounted 6 meters high in an azimuthal position
448 above the centre of the room. The recordings had a resolution of 1920×1440 pixels and a
449 frame rate of 30 fps. Videos were later analysed using PeTrack software [32, 33] to extract the coor-
450 dinates of pedestrians based on their coloured caps. To facilitate identification, LT participants
451 were given yellow hats, while RT participants were given red hats to wear during the experiments
452 (discrimination was performed based on the turning direction in the initial test before the exper-
453 iments). As in the Spanish experiments, velocities were calculated using a sliding window of 0.8
454 seconds. One example of the experiment is included in the Supplementary Movie 3.

455 Given that the experiment was conducted in Japan, where we hypothesized that lane forma-
456 tion predominantly occurs on the left side, it was essential to confirm whether this assumption
457 held true. To validate this hypothesis, a questionnaire was administered to participants during the
458 informative session for the experiments. The questionnaire presented participants with a series

459 of images showing an individual walking in a corridor at varying distances (refer to the Sup-
460 plementary Information for details). Participants were asked to indicate their preferred walking
461 direction. The results of this survey (summarized in Table 2, SI) revealed a clear preference for
462 walking on the left side (Section A, SI), confirming the hypothesis.

463 **Nursery School in Japan**

464 This experiment, conducted by Jun Ichikawa et al. [17], analysed the emergence of spontaneous
465 social movement in children during eurhythms activities in a nursery classroom setting. Specif-
466 ically, the study examined a warm-up activity where children run freely around the room while
467 the instructor plays the piano (see Fig. 1c).

468 Data were collected from four distinct class groups, each with a different mean age, all under
469 six years. The individual positions of the children were included as Supplementary Information in
470 the article. Velocities were calculated from these positions using a 0.8-second sliding window, as
471 the videos were recorded at 20 fps. For each homeroom, several periods of motion were analysed,
472 lasting between 5–10 seconds. These periods were interspersed with pauses when the instructor
473 stopped playing. The number of periods per group varied (see Table I in SI), with at least
474 two repetitions recorded for each class. For further details about the experimental setup and
475 methodology, readers are referred to the original article [17].

476 **Elicitation of Social Norms**

477 For our elicitation of social norms we resorted to well established concepts and methods proposed
478 by Bicchieri [24, 26]. Participants were students from the University of Navarra, approximately
479 half of them Spanish and half from different foreign countries. They were shown the picture in
480 Fig. 5(a) and went through the following questionnaire:

- 481 1. This is a ring with people inside. Picture yourself as if you were one of these persons, and you
482 would like to walk in circles. In which sense would you move? (CW/CCW)
- 483 2. In which direction do you think most of the people will move? (CW/CCW)
- 484 3. In which direction do you believe that others expect you will move? (read twice) (CW/CCW)

485 Question (1) elicits the decision the person would take in the hypothetical case. Questions (2)
486 and (3) elicit empirical and normative expectations, respectively.

487 Answers to the questionnaire were economically incentivized in order to obtain more careful
488 responses. To that end, answers to questions (2) and (3) were compared to experiments and with
489 answers to question (1) respectively; people answering questions (2) and (3) correctly (meaning
490 either in agreement with the experiments for question (2) or with the majority of answers in
491 question (1) for question (3)) entered a lottery for four gift cards of 25 euros each. We received
492 a total of 168 valid responses.

493 **Individual Motion**

494 The last experiment, conducted at the University of Navarra, aimed to examine the influence of
495 individual characteristics on the turning preference of pedestrians. A total of 209 participants (88
496 men, 121 women) were recruited over three days. Participants were university students and staff
497 who volunteered to take part after being approached near the designated experimental area. All
498 participants provided verbal consent. Since no personal information was collected and recordings
499 were anonymized, with no faces captured, the University of Navarra’s ethics committee told us
500 that no further ethical approval was required.

501 The experiment was conducted within a hexagonal enclosure delimited by chairs and tables,
502 with each side measuring approximately 4.6 meters (Fig. 8a). Prior to the experiment, all partic-
503 ipants underwent a series of assessments to determine their hand, foot, and eye dominance
504 (left or right preference). For those who were unaware of this information, various tests were con-
505 ducted. Foot dominance was determined by instructing participants to kick a wooden object a
506 couple of times; if they alternated between feet, they were subsequently asked to simulate step-
507 ping on an insect to identify a consistent preference. Eye dominance was evaluated using the Miles
508 test [34]. Independently, to examine how restricted eye laterality affects movement patterns, 51
509 participants wore a patch over their right eye.

510 During the experimental trials, individuals were instructed to move freely within the enclosed
 511 space for 60 seconds without stopping. The experiments were recorded using a Go-pro camera
 512 mounted 5 meters above the centre of the arena, capturing footage at a resolution of 3840×3360
 513 pixels and a frame rate of 25 fps. The videos were analysed using a custom-developed image
 514 analysis program to track the positions. As always, velocities of the participants were calculated
 515 using a sliding window of 0.8 seconds. The Supplementary Movie 4 includes a video recording of
 516 one experiment.

517 Metrics and Nomenclature

518 For all experiments, the rotation (both individual and collective) was quantified by means of the
 519 polarization parameter [18]. Given a pedestrian i at time t , the individual polarization value m_i
 520 is defined as:

$$521 \quad m_i(t) = \hat{v}_i(t) \cdot \hat{e}_i^\varphi(t) \quad (1)$$

522 where \hat{v}_i is the normalized velocity vector, and \hat{e}_i^φ is the azimuthal position calculated as
 523 $\hat{e}_i^\varphi = R_{90^\circ} \hat{r}_i$. This represents a 90° CCW rotation of the normalized position vector of the
 524 pedestrian \hat{r}_i relative to the centre of the arena. Thus, when $m_i = 1$, it indicates a perfect CCW
 circular motion, while $m_i = -1$ correlates with CW rotation.

525 Based on this, we can define the following magnitudes:
 526

- 527 • \bar{m}_i : Time average of the individual polarization per pedestrian over all the experiment duration.
- Collective polarization $\mathbf{M}(\mathbf{t})$, defined as:

$$528 \quad M(t) = \frac{\sum_i^N m_i(t)}{N}$$

529 where N is the total number of people in the arena.

- $\bar{\mathbf{M}}$: Time average of the collective polarization over all the experiment duration.

530 **Supplementary information.**

531 • Supplementary Notes.
532 • Questionnaires used in the elicitation of social norms (English and Japanese Versions).
533 • Supplementary Movies 1-4.

534 **Acknowledgements.** We thank L. Urrea and C. Martín-Gómez for their help with the
535 experiments. We also thank D. Maza for useful discussions.

536 **Declarations**

537 **Funding:** I.E.H., A.G. and I.Z. acknowledge support from the Spanish Ministry of Science
538 and Innovation through the Grants No. PID2020114839GB-I00 and No. PID2023-146422NB-
539 I00 funded by MCIN/AEI/10.13039/501100011033, FEDER, UE. C.F. acknowledges support
540 from the JSPS KAKENHI Grant No. JP23K13521 and K.N. acknowledges support from
541 the JST-Mirai Program Grant Number JPMJMI20D1. A.S. acknowledges support from grant
542 PID2022-141802NB-I00 (BASIC) funded by MCIN/AEI/10.13039/501100011033 and by 'ERDFA
543 way of making Europe', and also from grant MapCDPerNets—Programa Fundamentos de la
544 Fundación BBVA 2022.

545 **Conflict of interest:** The authors declare no competing interests.

546 **Ethics approval and consent to participate:** In all experiments, informed consent was
547 obtained from all participants and/or their legal guardians. The experimental protocols were
548 approved by the corresponding institutional and/or licensing committees.

549 **Data availability:** The data that support the plots within this paper are available via Zenodo
550 at XXX.

551 **Author contribution** I.E.H., A.G. and I.Z. designed the research. I.E.H., C.F., A.G. and I.Z.
552 designed the experiments. I.E.H., C.F., Z.S., A.G. and I.Z. built the experimental setup and
553 recorded the experiments. A.S. designed the social norm elicitation section. I.E.H., Z.S., A.S.,
554 A.G. and I.Z. analyzed the data. I.E.H. and I.Z. wrote the paper. All authors revised the results
555 and commented on the manuscript.

556 **References**

557 [1] Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F. & Schreckenberg, M. Experimental
558 study of pedestrian counterflow in a corridor. *Journal of Statistical Mechanics: Theory and
559 Experiment* **2006**, P10001 (2006).

560 [2] Feliciani, C. & Nishinari, K. Experimental analysis of collision avoidance behavior. *Physical
561 Review E* **94**, 032304 (2016).

562 [3] Bacik, K. A., Bacik, B. S. & Rogers, T. Lane nucleation in complex active flows. *Science*
563 **379**, 923–928 (2023).

564 [4] Moussaid, M. *et al.* Traffic instabilities in self-organized pedestrian crowds. *PLoS
565 computational biology* **8**, e1002442 (2012).

566 [5] Kretz, T., Grünebohm, A. & Schreckenberg, M. Experimental study of pedestrian flow
567 through a bottleneck. *Journal of Statistical Mechanics: Theory and Experiment* **2006**,
568 P10014 (2006).

569 [6] Hoogendoorn, S. P. & Daamen, W. Pedestrian behavior at bottlenecks. *Transportation
570 science* **39**, 147–159 (2005).

571 [7] Murakami, H., Feliciani, C., Nishiyama, Y. & Nishinari, K. Mutual anticipation can
572 contribute to self-organization in human crowds. *Science Advances* **7**, eabe7758 (2021).

573 [8] Garcimartín, A. *et al.* Redefining the role of obstacles in pedestrian evacuation. *New Journal
574 of Physics* **20**, 123025 (2018).

575 [9] Gu, F., Guiselin, B., Bain, N., Zuriguel, I. & Bartolo, D. Emergence of collective oscillations
576 in massive human crowds. *Nature* **638**, 112–119 (2025).

577 [10] Helbing, D. & Johansson, A. *Pedestrian, Crowd and Evacuation Dynamics*, 6476–6495
578 (Springer New York, New York, NY, 2009).

579 [11] Zanlungo, F., Feliciani, C., Yücel, Z., Nishinari, K. & Kanda, T. Macroscopic and microscopic
580 dynamics of a pedestrian cross-flow: Part i, experimental analysis. *Safety science* **158**, 105953
581 (2023).

582 [12] Bain, N. & Bartolo, D. Dynamic response and hydrodynamics of polarized crowds. *Science*
583 **363**, 46–49 (2019).

584 [13] Helbing, D., Buzna, L., Johansson, A. & Werner, T. Self-organized pedestrian crowd
585 dynamics: Experiments, simulations, and design solutions. *Transportation science* **39**, 1–24
586 (2005).

587 [14] Mohr, C., Landis, T., Bracha, H. & Brugger, P. Opposite turning behavior in right-
588 handers and non-right-handers suggests a link between handedness and cerebral dopamine
589 asymmetries. *Behavioral neuroscience* **117**, 1448 (2003).

590 [15] Silverberg, J. L., Bierbaum, M., Sethna, J. P. & Cohen, I. Collective motion of humans in
591 mosh and circle pits at heavy metal concerts. *Physical Review Letters* **110**, 228701 (2013).

592 [16] Echeverría-Huarte, I., Nicolas, A., Hidalgo, R. C., Garcimartín, A. & Zuriguel, I. Spont-
593 aneous emergence of counterclockwise vortex motion in assemblies of pedestrians roaming
594 within an enclosure. *Scientific reports* **12**, 2647 (2022).

595 [17] Ichikawa, J., Fujii, K., Nagai, T., Omori, T. & Oka, N. Quantitative analysis of spontaneous
596 sociality in children's group behavior during nursery activity. *Plos one* **16**, e0246041 (2021).

597 [18] Bricard, A. *et al.* Emergent vortices in populations of colloidal rollers. *Nature communica-
598 tions* **6**, 7470 (2015).

599 [19] Feliciani, C. & Nishinari, K. Empirical analysis of the lane formation process in bidirectional
600 pedestrian flow. *Physical Review E* **94**, 032304 (2016).

601 [20] Murakami, H., Feliciani, C. & Nishinari, K. Lévy walk process in self-organization of
602 pedestrian crowds. *Journal of the Royal Society Interface* **16**, 20180939 (2019).

603 [21] Helbing, D. A mathematical model for the behavior of pedestrians. *Behavioral science* **36**,
604 298–310 (1991).

605 [22] Moussaïd, M. *Etude expérimentale et modélisation des déplacements collectifs de piétons*.
606 Ph.D. thesis, Université de Toulouse III (2010).

607 [23] Turiel, E. *The Development of Social Knowledge: Morality and Convention* (Cambridge
608 University Press, Cambridge, UK, 1983).

609 [24] Bicchieri, C. *Norms in the Wild: How to Diagnose, Measure, and Change Social Norms*
610 (Oxford University Press, New York, 2017).

611 [25] Cialdini, R. B., Kallgren, C. A. & Reno, R. R. A focus theory of normative conduct: A
612 theoretical refinement and reevaluation of the role of norms in human behavior. *Advances
613 in Experimental Social Psychology* **24**, 201–234 (1991).

614 [26] Szekely, A. *et al.* Evidence from a long-term experiment that collective risk changes social
615 norms and promotes cooperation. *Nature Communications* **12**, 5452 (2021).

616 [27] Ma, Y., Lee, E. W. M., Shi, M. & Yuen, R. K. K. Flow rate optimization and stepping
617 synchronization in single-file pedestrian movement. *Nature Human Behaviour* **5**, 447–455
618 (2021).

619 [28] Tomaru, T., Nishiyama, Y., Feliciani, C. & Murakami, H. Robust spatial self-organization
620 in crowds of asynchronous pedestrians. *Journal of The Royal Society Interface* **21**, 20240112
621 (2024).

622 [29] Zuriguel, I. *et al.* Contact forces and dynamics of pedestrians evacuating a room: The column
623 effect. *Safety Science* **121**, 394–402 (2020).

624 [30] Yi, S., Li, H. & Wang, X. *Understanding pedestrian behaviors from stationary crowd groups*,
625 3488–3496 (2015).

626 [31] <https://www.jikken-baito.com>.

627 [32] Boltes, M., Seyfried, A., Steffen, B. & Schadschneider, A. *Automatic extraction of pedestrian*
628 *trajectories from video recordings*, 43–54 (Springer, 2010).

629 [33] Boltes, M. & Seyfried, A. Collecting pedestrian trajectories. *Neurocomputing* **100**, 127–133
630 (2013).

631 [34] Miles, W. R. Ocular dominance demonstrated by unconscious sighting. *Journal of*
632 *experimental psychology* **12**, 113 (1929).