Higher-order interactions shape collective human behavior
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Traditional social network models focus on pairwise interactions, overlooking the complexity of
group-level dynamics that shape collective human behavior. Here, we outline how the framework

of higher-order social networks

using mathematical representations beyond simple graphs — can

more accurately represent interactions involving multiple individuals. Drawing from empirical data
including scientific collaborations and contact networks, we demonstrate how higher-order struc-
tures reveal mechanisms of group formation, social contagion, cooperation and moral behavior that
are invisible in dyadic models. By moving beyond dyads, this approach offers a transformative lens
for understanding the relational architecture of human societies, opening new directions for behav-
ioral experiments, cultural dynamics, team science and group behavior, and new cross-disciplinary

research.
INTRODUCTION

The structure of social networks affects many as-
pects of human behavior, and perhaps more than other
paradigm lays bare the shortcomings of the ‘economic
man’ perspective. Human beings do not simply strive to
amass the greatest amounts of conveniences and luxuries
with least possible effort, but because we are connected
to others, we often take their desires and well-being into
account in spite of our inherent self-interest. This line
of thought leads to the perspective of the ‘network man’
who, driven by embeddedness in a network of social re-
lations, exists and acts in a delicate balance between his
well-being and the sympathy for the well-being of oth-
ers. Ample evidence exists that maintaining this balance
affects most of our actions, from whom we vote for to
what we eat and which partners we choose and why [1].
Apart from our behavior, the complex connectedness of
modern human societies can be seen in the ease of global
communication and in the lightning speeds at which news
and information as well as epidemics and financial crises
spread [2].

Since the introduction of sociograms to describe social
configurations by Moreno and Jennings [3], social net-
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work analysis has grown into a field of its own. New
theories were proposed, starting with Granovetter’s es-
says on the importance of weak ties for increasing the
reach of marketing, politics, and information beyond the
few that are accessible through strong connections [4], as
well as pioneering experiments, such as Milgram’s work
on the small-world phenomenon [5]. Using nodes and
links to describe individuals and their pairwise relation-
ships, network science is nowadays a major paradigm in
contemporary sociology and behavioral sciences, while at
the same time being a vibrant research field in its own
right [6-9].

Traditional social networks consist of agglomerates of
dyads (or pairs), which together give rise to large inter-
connected webs of human relations. Yet, this theoretical
framework is not well suited to capture a crucial feature
of human behavior, i.e. group interactions. In this per-
spective we discuss the limitations of the link as the sin-
gle fruitful modeling paradigm for social interactions, and
highlight the descriptive power of “higher-order interac-
tions”, where individuals can be bound in groups of two,
but also three or hundreds, all at once. The potential im-
pact of non-dyadic modeling approaches was recognized
already in the early 70s by Atkin [10, 11] and Berge [12].
However, it is only recently, thanks to unprecedented ac-
cess to high-resolution social network data, that higher-
order social networks have emerged as a natural solu-
tion to capture and model the interconnected structure
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of groups which characterize many aspects of real-world
social systems.

The limits of the classic network paradigm — and in-
deed the inherent irreducibility of higher-order interac-
tions to pairwise interactions — become particularly evi-
dent when studying not only the structural organization
of human relations, but also human behavior. Already
in 1895, Gustave Le Bon pointed out that an individ-
ual immersed in a group for long time loses their iden-
tity becoming subject to the ‘magnetic influence’ given
out by the crowd [13]. A few years later Simmel fur-
ther discussed the idea that group dynamics cannot be
reduced to the sum of dyadic relationships [14], and em-
phasized that groups of three can facilitate reconciliation
and resolution of conflicts because of a third party (e.g.
a mediating country facilitating communication to find
a mutually acceptable solution to a conflict), but also
create new conflicts (e.g. a beneficiary who chooses be-
tween two conflicting sides to change the power balance).
Drawing from the ideas of ‘gestalt psychology’, Lewin
postulated that when groups are formed, they indeed be-
come a unified system which cannot be understood by
evaluating members individually [15]. In modern lan-
guage, this translates into the ability to model new social
phenomena and dynamics such as peer pressure, opinion
formation and large-scale cooperation with the tools of
higher-order social networks. On the other hand, in con-
trast to conventional social network analysis, which often
infers group structures inductively from patterns of pair-
wise interactions, the hypergraph framework allows for
a more direct, or deductive, representation of inherent
group-level phenomena. This distinction is crucial for
understanding social complexity that transcends dyadic
relationships.

In what follows, we first describe the vocabulary and
key concepts behind higher-order interactions. We then
delve into large-scale digital data as a trove of new oppor-
tunities for breakthrough explorations of human behav-
ior, from collaboration networks to high-frequency con-
tact social networks. Lastly, we discuss recent research
where higher-order social networks have been employed
to obtain new insights on social phenomena, allowing us
to reveal new mechanisms for group formation, to im-
prove the modeling of social contagion, cooperation, and
other forms of moral behavior, as well as opportunities
for social experiments. We conclude with a synergy of
the key recent developments, and outline promising di-
rections for future research.

HIGHER-ORDER INTERACTIONS

Since its foundation, social network analysis has heav-
ily relied on the mathematical framework of graph the-
ory [16]. In its classical representation, a social network
can be seen as a graph, that is a collection of actors,
represented as nodes, and links, describing the pairwise
interactions among them. Despite being widespread, this

framework has clear limitations when describing real so-
cial systems, where social interactions often occur in
larger groups. To better represent these higher-order in-
teractions, we can make use of more complex mathemat-
ical objects, which naturally allows us to capture social
relations beyond the dyadic level [17]. The natural can-
didates to formally describe higher-order social networks
are hypergraphs. Formally, a hypergraph

H={V.E}

is a collection of nodes V', representing the agents in
the system, and their interactions F, described as hyper-
edges, generalizations of links which can encode relations
not only between pairs of nodes, but among an arbitrary
number of K partners [12].

Despite the focus on simple graphs, social network
analysis has already attempted to go beyond a simple
characterization of relations among pairs. At the micro-
scale, non-dyadic interactions have been investigated by
looking at cliques, fully connected small subgraphs whose
members are all socially linked to each other, or other
small motifs [18], highlighting frequently observed pat-
terns of social interactions. At the macro-scale, large
attention has been devoted to the organization of indi-
viduals into social clusters, or communities [19, 20].

However, extracting information about the real higher-
order structure of social networks from traditional graph
representation might be misleading. We illustrate these
limitations through an illustrative higher-order social
network in Figure 1. Hypergraphs [12] are the most
flexible representation for higher-order social networks,
allowing to encode interactions of arbitrary group sizes
without any particular constraints. In the case of simpli-
cial complexes, the system is encoded as a collection of
simplices, which combinatorially not only describe an in-
teraction among their members, but also among all possi-
ble subsets [21, 22|. For this reason, such a representation
might not always be suitable, except in those cases where
the presence of a larger group interaction also implies the
presence of all related interacting subgroups. Simplicial
complexes have been widely used because their structure
makes them well suited for methods from topological data
analysis, which help uncover patterns in the ‘shape’ of
data. However, from a combinatorial viewpoint, they are
a restricted type of hypergraph and therefore often fail
to capture the full complexity of higher-order interactions
observed in real-world systems.

In a simple pairwise representation, groups are pro-
jected and represented as cliques of dyadic ties. This
severely limits our understanding of the structure of in-
teractions in the system, as the original groups can gen-
erally not be retrieved. For instance, transitivity may
either indicate the presence of one higher-order interac-
tion involving three partners, or arise from combining
three distinct social interactions among three pairs of in-
dividuals. The two situations are both frequent in col-
laboration networks, where a triangle may be associated
to a single paper co-authored by a team of three indi-



viduals, or to three distinct papers produced by pairwise
collaborations. Differences become even more relevant
when interactions are inferred from co-occurrence in so-
cial groups. If we take a group photo, a group meeting
or an email chain and we draw dyadic links among all
members of the group, this induces artificially high levels
of transitivity in the system. Such distortions in network
structure may lead to poor modeling choices when de-
scribing social dynamics which are strongly affected by
group mechanisms.

It is also worth to mention that past research has lever-
aged the language of pairwise networks in an attempt to
explicitly describe higher-order interactions. This can be
done by considering a particular type of bipartite graphs,
where a first set of nodes describe individuals, and a sec-
ond set of nodes accounts for groups, each individual be-
ing linked to the groups in which she participates [23, 24].
While such representation does not distort the data, di-
rect higher-order representations are preferable as they
recover and expand the original framework of social net-
work analysis, where nodes are reserved for social actors,
and (hyper)links are used to model interactions among
them. Additionally hypergraphs allow for more intuitive
grasp of many empirical features of real-world systems
such as presence of nested and overlapping group struc-
tures, compared to bipartite projections. Moreover, such
a representation does not necessarily reduce to a sim-
ple graph when only dyadic ties are present. Finally, we
note that higher-order approaches are complementary to
coarse-grained views of social networks based on com-
munities [19] and hierarchical structures[25], since hyper-
links allow for the detailed model of groups of different
sizes at the microscale.

Indeed, hypergraphs provide a natural representation
of real social systems in their complexity, which smoothly
reduce to traditional networks when only pairwise inter-
actions are present. They allow researchers to inherit a
generalized toolkit of consolidated measures of social net-
work analysis, from degree to centrality measures [26, 27].
Recent research has focused on developing richer ways
to describe higher-order connectivity. At the local level,
such patterns can be quantified using higher-order clus-
tering coefficients [28] and extensions of motif analy-
sis [29, 30]. At larger scales, new algorithms make it pos-
sible to detect community structure — both hard [31, 32]
and overlapping [33, 34| — as well as core—periphery orga-
nization [35]. Hypergraphs are also particularly effective
for representing the temporal evolution of social systems,
where higher-order interactions change dynamically over
time [36-39|. In parallel, efforts have been made to make
such tools available to the research community, through
libraries such as HGX [40], XGI [41], HyperNetX [42],
and others. In the next sections, we provide a quick
overview of recent findings on the higher-order organi-
zation of social networks, from collaboration networks
to face-to-face interactions, and discuss how taking into
account the higher-order structure of real-world social
systems affect social processes and collective behaviors.

DIGITAL DATA
Affiliation and collaboration networks

Affiliation networks, where individuals are associated
to groups, are a primary example of social systems which
cannot be suitably described by simple graphs [16]. In-
deed, affiliation to each group can be represented as a
hyperedge of a social hypergraph. In the early 1980s hy-
pergraphs were first used to describe overlapping partici-
pation to voluntary organizations [43], ethnic groups [44]
and religious celebrations [45]. This focus on group in-
teractions served soon as a stimulus to develop new net-
work tools, such as centrality measures explicitly taking
into account higher-order social relationship [46-48]. In
late 2000s, multipartite systems based on folksonomy (a
system of users collaboratively tagging and annotating
data) were used to develop a systematic framework to
represent them as hypergraphs based on various projec-
tion protocols [49, 50]. Moreover, group memberships
can be exploited to define similarity among individuals
by introducing suitable association index [51, 52].

Scientific collaboration networks are one of the most
studied affiliation networks [53-55]. In many fields sci-
entific advances are not achieved through the work of
lone geniuses but through teamwork, with a tendency
of pairwise collaborations to be less and less relevant
compared to the outcome of larger groups [56, 57]. At
the individual level, higher-order generalizations of lo-
cal measures such as the node degree have been used to
determine the relevance of scientists within scientific do-
mains [58, 59]. At the team level, some collaboration pat-
terns have been found to be prevalent [60], with a sizable
number of groups of co-authors often working together
exclusively as a single unit [29]. If a group of people rep-
resent a true social structure (family, friends, etc), we
expect to see that same configuration of nodes recurring
repeatedly over time [61]. This tendency of repeated in-
stances of groups is typical of collaborations in science,
holding true in workplaces where workers tend to form
teams with similar sets of team members [62]. Building
on this idea, researchers have identified persistent collab-
orations by detecting statistically significant higher-order
interactions [63]. Most of these collaborations turn out to
involve groups larger than pairs and are more likely to be
geographically co-located than short-lived co-authorships
[64].

Co-authorship networks have also been investigated
through the eyes of topological data analysis, providing
a characterization of the “shape” of collaborations [65].
Persistent homology, a recent computational technique
to extract topological features of a simplicial complex at
different spatial resolutions, has been applied to collabo-
rations across different domains, to get insights on collab-
oration patterns across disciplines. Already in the 1970s
Atkin pioneered works on the potential of higher-order
interactions proposing a mathematical framework based
on cohomology and ¢-analysis to encode higher-order in-




teractions in affiliation data [10, 11]. Real collaboration
hypergraphs were found to have peculiar structure, with
more clustering and filled triangles than what observed
in randomized systems with the same number of nodes
and connections [66]. An analysis of collaboration data
from arXiv also showed that when three authors have
collaborated as distinct pairs, there is a high chance that
they also have published joint papers altogether [67]. The
strength of such a “simplicial closure”, a generalization
of the well-known concept of structural holes for tradi-
tional networks [68], may differ according to the type of
collaboration hypergraphs, and can also be used to dif-
ferentiate social networks from biological systems [28].
Even if scientific fields were found to have quite different
typical sizes for collaborations, the number of collabora-
tive efforts in which each scientist takes part is generally
comparable [67] (with the exception of large-scale exper-
iments such as collaboration at CERN for physics), a
finding which could be associated to a maximum capac-
ity for attention.

High-frequency contact networks

As discussed above, social structures, such as family,
friends, etc, result in the same configuration of nodes
recurring again and again over time [61]. We also know
that the relationships during a meeting of a group of four
people cannot be reduced to six pairwise relations [69].
These two observations suggest that it is meaningful to
describe real-world contact networks using hypergraphs.
Further, the hypergraph representation is particularly
relevant when we include a temporal perspective of how
social interactions unfold. This intuition has been con-
firmed as technological progress has made it possible to
collect datasets or large social systems with high time-
resolution over extended periods of time. In perhaps
the largest study of high-frequency contact networks the
Copenhagen Networks Study [70], Sekara et al. [71] ob-
served the interactions of about 1000 freshman students
in 5-minute time intervals over 36 months. In addi-
tion to physical proximity measured via Bluetooth, they
also recorded virtual forms of social proximity, includ-
ing phone calls, text messages, and social media interac-
tions. They found the physical proximity network to be
well described as temporal sequences of fully connected
cliques or “gatherings” lasting up to 12 hours, with a
gathering of size K corresponding to a meeting of K in-
dividuals. While the nomenclature is different, a gath-
ering of size K is essentially a hypergraph of size K.
The authors also identified repeated gatherings over time
(denoted “cores”), corresponding to groups of individu-
als that would meet again and again across weeks and
months. Analyzing their dataset in terms of gatherings
and cores rather than simple dyads, allowed to help de-
fine and predict the social trajectories of individuals [71].
This dataset is available to researchers [72].

The Copenhagen Networks Study is neither the first,

nor the last study of high frequency interaction data.
Over the years, multiple field studies have used state-of-
the-art technology to collect contact networks in diverse
settings such as schools, universities, scientific confer-
ences, hospitals, museums, and corporate offices. Below,
we highlight some major datasets about the composition
and evolution of groups. A key example is the pioneer-
ing work in reality mining [73] from MIT’s MediaLab,
where students in a MIT dormitory were equipped with
sensing smartphones. Started in 2008, the Sociopattern
project [74] collected longitudinal data of face-to-face in-
teractions in a number of contexts such as workplace,
scientific conference, and hospital [75]. Two datasets on
contact networks at a scientific conference and a museum
exhibition were collected and analyzed by Isella et al. [76],
while Génois et al. [77] collected face-to-face data us-
ing wearable sensors in a corporate office. Similar data
involving health-care workers and patients at a hospi-
tal was collected by Vanhems et al. [78]. Other exam-
ples of such data are the StudentLife dataset from Dart-
mouth University [79, 80], Marseilles high-school student
dataset [81], and Lyon primary school student datasets
[82]. In the recent years, the DyLNet project collected
high resolution face-to-face data on preschool children
over a period of 3 years [83]. Finally, high frequency con-
tact networks have also been inferred from other sources,
for example connection to WiFi-routers [84], or from co-
location in GPS data [85].

More recently, higher-order representations have been
directly leveraged to describe the evolution of social inter-
actions in physical space with recurring groups, model-
ing them as a sequence of hyperedges of a hypergraph, as
shown in Fig. 3. An analysis of face-to-face interactions
across different contexts revealed that, no matter the size
of social encounters, group interactions tend to be clus-
tered closely in time, a phenomenon dubbed as bursti-
ness [36]. In the recent past, Gallo et al. [38] proposed
a systematic framework to measure correlations across
time in higher-order networks. Using face-to-face data
from multiple sources they analyzed the correlation of
groups of different sizes across various time separations.
Their analysis revealed that groups of similar sizes are
significantly correlated even at a long time-scale, thus re-
inforcing signatures of past gatherings. Furthermore, us-
ing these temporal correlations among groups of different
sizes, they highlighted the differences between group for-
mation and group segregation depending on group size.
While the previous model considered social interactions
from a group-membership perspective, Iacopini et al. [39]
studied temporal group dynamics from a node-centric
perspective. In particular, they found that individuals of-
ten move from larger groups to smaller groups and that
groups form and break over time in small incremental
steps rather than any sudden changes, often forming large
cores of central and tightly connected individuals [86].

Beyond humans, high-frequency proximity data have
also allowed researchers to track the evolution of higher-
order interactions in animal social networks [87]. An



analysis of a vulturine guinea-fowl population has re-
vealed that females and low-ranking group members take
part preferentially in dyadic interactions, while males and
more dominant group members are substantially more
likely to engage in groups containing more than two in-
dividuals [88]. Beyond simple contacts, higher-order ap-
proaches have also been used to study non-dyadic com-
munication patterns and vocal communication in birds,
better revealing vocally coordinated group departures
and informing models of cultural evolution of vocal com-
munication [89].

MODELING SOCIAL PROCESSES
Group formation and evolution

There is a substantial literature on social mechanisms
that describes the formation and evolution of ties in
social networks [90-93]. Focusing, however, solely on
dyadic interactions, this work does not incorporate the
higher-order nature of many social interactions. Given
the higher-order organization of real-world contact net-
works that we have summarized above, a stream of re-
search has recently focused on proposing simple models
able to reproduce the observed empirical patterns. Gallo
et al. [38] introduced a model to generate a synthetic tem-
poral hypergraph based on the memory of previous en-
counters. In particular, they showed that, considering a
hyperedge update process based on the past occurrences
of specific hyperedges of various sizes, reproduced real-
life patterns of long term group correlations as well as
dynamics of group aggregation and segregation. On the
other hand, Tacopini et al. [39] proposed a model from
a node-centric point of view. They considered that at
each time step, an individual decides to either stay in
the group or leave the old group and join a new group,
based on the past history of time spent in the group as
well as the trajectory of past encounters (often dubbed as
social memory). Their model accurately reproduces the
empirical patterns of group assembly and disassembly.

Another extension of this line of research concerns the
introduction of signs, i.e., having positive and negative
links (e.g., to represent friendships and enmities in a col-
lective of people. One of the key mechanisms behind
the dynamics of signed networks is social balance the-
ory [94]: loosely speaking, the fact that the friend of my
friend is my friend and the enemy of my enemy is also my
friend [95]. This implies that some triangles are stable
(three people who are all friends with each other, or two
people who are friends and are enemies of a third one)
and others are unstable (two enemies with a common
friend or three enemies). Naturally, this calls for a study
of triangle motifs in networks as drivers of relationship
creation and destruction [96]. In addition, higher-order
networks provide a natural formalism to include other
motifs (squares, pentagons, cycles of any length) that
have also been shown to be relevant in temporal signed

networks [97].

A crucial feature neglected by network-based models
is that in contact networks, agents move in a physi-
cal environment. Indeed, simple frameworks based on
mobile agents and individual attractiveness have been
shown to successfully reproduce the temporal structure
and bursty behavior of dyadic interactions [98]. Beyond
dyads, the spatiotemporal features of groups in human
face-to-face interactions can be captured by agent-based
models where each group is characterized by an intrinsic
degree of social appeal, the group attractiveness, based
on which neighboring agents decide whether to join the
group or walk away [99], as illustrated in Fig. 4 (A).
The framework can reproduce many properties of groups
in face-to-face interactions, including their distribution,
the correlation in participation in both small and larger
groups, and their persistence in time, which cannot be
replicated by dyadic models.

The above models can be enriched to account for in-
dividual features such as gender, unveiling complex ho-
mophilic patterns in groups of different sizes [99] which
are not included in standard pairwise measurement of ho-
mophily [100]. First, group-level interactions exacerbate
homophily, the tendency of individuals to associate with
similar others. In this way, homophily can exhibit mul-
tiplicative effects in the presence of a group, departing
from traditional ways of measuring dyadic attractions
[101, 102]. This can lead to social segregation and in-
equality as groups form around shared attributes as de-
picted in Fig. 4 (B). In a consolidated society where peo-
ple associate with similar others in multiple shared fea-
tures such as socioeconomic status, race, ethnicity etc, in-
equalities tend to become compounded [103] and higher-
order interactions can amplify this compounding effect
[104].

Social contagion

We now turn to the impact of group interactions on
efforts to model the spreading of rumors, the adoption
of norms and the diffusion of innovations. In biological
contagion, such as epidemic spreading, the probability of
infection between a pair of individuals ¢ and j is propor-
tional to the amount of time ¢ and j spend together, in
this sense the probability of infection is inherently dyadic
[105]. Thus, when an individual is connected to multiple
other agents, we can consider each link as an independent
source of infection (Fig. 5A). In the context of social con-
tagion, the picture is less clear. Although initially con-
sidered similar and modeled in similar ways [106-108],
we have now come to understand that ‘complex’ social
spreading depends on the network configuration around
a susceptible node [109-111]. Unlike the case of disease
spreading, being exposed to a behavior for 10 hours by
one person, is different than being exposed to the same
behavior for 1 hour by ten people. Multiple mechanisms
for social contagion have been proposed, starting with



the threshold model [112, 113], where multiple exposures
(and not just exposure to multiple sources) are needed
for spreading. Opinion dynamics models [114], such as
the voter model [115] or majority rule models [116] are
other examples of complex interaction dynamics on net-
works. Theories of complex contagion, where exposures
to multiple sources is required for contagion (Fig. 5B),
are supported by mounting experimental evidence that
social spreading is different from disease spreading [117—
123]. The detailed mechanisms behind ‘complex conta-
gion’, however, are still not clear. In the computational
domain, various epidemic models have been thoroughly
explored but the ‘toy models’ studied in this domain (see
[124] for an overview) are typically chosen for their ana-
lytical properties, rather than realistic properties.

Recently, however, the use of a framework based on
higher-order interactions has shown great promise in al-
lowing us to explicitly model group interactions at the
microscopic scale. The crucial novelty is that groups
of different size may be associated to unequal infection
rates, reflecting different degrees of social influence and
peer pressure (Fig. 5C) [125]. The model [125] mim-
ics a social reinforcement process where group pressure
can have an additive effect with respect to traditional
pairwise transmission. If collective social influence as-
sociated with higher-order interactions is low, the sys-
tem behaves like a traditional SIS model. There exists a
critical threshold of pairwise transmissibility that sepa-
rates two regimes: one where new ideas quickly die out,
and another where they persist in the population. Near
this threshold the change is usually gradual, with only a
small fraction of individuals adopting the idea. However,
when groups exert strong social pressure, the threshold
is lowered and the transition becomes abrupt, producing
sudden large-scale shifts in collective adoption.

This behavior can be explained analytically by describ-
ing the temporal evolution of infection using a mean-field
approach, which shows the emergence of co-existence be-
tween endemic and non-endemic stable regimes. Impor-
tantly, the bistability has social consequences: depending
on the number of initially infected individuals the prop-
agation of a norm or behavior may either diffuse widely
into the population, or die out. Differing from the tra-
ditional pairwise models of social contagion, this finding
highlights the necessity of a critical mass in order to initi-
ate social changes in society, as also observed for related
dynamics of social conventions [126].

Originally obtained for homogeneous simplicial com-
plexes, results have been generalized to heterogeneous
simplicial complexes [127] and hypergraphs [128, 129],
giving rise to a promising stream of new research aimed
at characterizing contagion through better and more re-
alistic models of social dynamics.

Cooperation

Cooperation in large groups of unrelated individuals
distinguishes us most from other mammals, and it is
largely due to these remarkable other-regarding abili-
ties that we enjoy our evolutionary success [130]. Un-
derstanding the origin and evolution of cooperation in
unfavorable situations has been a long-standing goal of
natural and social sciences [131]. Over the years, mul-
tiple game-theoretic modeling approaches based on reci-
procity [132, 133], image scoring [134-136], and repu-
tation [137-139] in collective action problems have been
proposed to enhance our understanding of how pro-social
behaviors emerge in social systems. These mechanisms
can be broadly classified into five rules [140], one of which
is network-based reciprocity, where repeated interactions
amongst interconnected individuals lead to higher levels
of cooperation. Innovative models leveraging these inher-
ent pairwise structural patterns such as heterogeneous
number of connections, ordered neighborhoods in lat-
tices, modular structures, and multi-layer networks [141-
145] have been shown to promote cooperation in social
dilemmas. But this research also revealed the many pos-
sible options of defining groups and attributing costs in
classical networks. After all, many social encounters are
group-based where multiple individuals interact simulta-
neously and face the consequences together. Contrary
to this intuition, it was shown that group interactions in
fact link individuals together even if they are not directly
connected in a pairwise manner, simply due to their par-
ticipation in the same group [146]. Moreover, group in-
teractions imposed on classical networks tend to diminish
the impact of topology on cooperation due to the aver-
aging effect and the consequent emergence of well-mixed
conditions, especially for large groups [147].

Taking into account higher-order modeling frameworks
largely alleviates the difficulties encountered in pairwise
interactions, proposing hypergraphs as a natural way
to study public goods games in groups and how these
group interactions influence the evolution of coopera-
tion [148, 149]. As a paradigmatic example, a standard
public goods game on hypergraphs was shown to cor-
respond exactly to the replicator dynamics in the well-
mixed limit, thus providing an exact theoretical founda-
tion — a null model — to study cooperation in groups [148].
The richness of higher-order modeling of evolutionary
games, primarily manifested through the nonlinearity in
payoffs of individuals in a group, was first exploited for
well-mixed populations [150] as well as structured popu-
lations [151]. Building on the idea of synergy and dis-
counting in groups, subsequent research extended the
framework for hypergraphs finding that increasing the
effect of nonlinearity (i.e. each additional cooperator in
a group scales the payoff for all members nonlinearly)
enhanced cooperative behavior [152]. Importantly, the
nonlinearity represents a genuine case of higher-order in-
teraction where the group behavior cannot be decom-
posed into multiple dyadic interactions. Along a similar



direction, Wang et al. [153] explored multiplayer public
goods games with arbitrary strategies beyond coopera-
tion and defection, such as peer and group punishment
to find that higher-order effects are necessary for more
precise modeling of public cooperation.

Going beyond the public goods game, Guo et al. [154]
studied the evolution of cooperation in simplicial graphs
with pairwise and three-body interactions for various so-
cial dilemmas such as Prisoner’s Dilemma, Snowdrift
Game, and Stag Hunt Game. The inclusion of three-
body interactions promoted the survival of non-dominant
strategies and led to a transition from dominant defec-
tion to dominant cooperation depending on the underly-
ing higher-order interaction patterns. Civilini et al. [155]
introduced a group choice dilemma with the possibility
to choose either a safe alternative (with lower payoff) or
a risky one (with higher payoff). The model reproduced
shifts in choices based on the group size, where the riskier
options with higher rewards were chosen if a small frac-
tion of individuals had a large number of connections
mimicking a power-law degree distribution in the associ-
ated hypergraph.

Even though specific multiplayer games were studied,
until recently, there was a lack of a generalized framework
to naturally incorporate higher-order structures into mul-
tiplayer game dynamics. Civilini et al. [156] filled this gap
by building a framework for any social dilemma on hy-
pergraphs as a specific case of the system illustrated in
Fig. 6. By meaningfully assigning payoffs for all pos-
sible combinations of strategies for both pairwise and
higher-order games, they provided a universal framework
to analyze any mixture of 2 and 3-player social dilem-
mas. Based on their study, the emergence of cooperation
in higher-order Prisoner’s Dilemma largely depends on
(i) presence of a minimally sufficient fraction of 3-player
interactions and (%) existence of a small minority of ini-
tially committed cooperators. These two factors together
contribute to push individuals to exhibit high levels of
cooperative behavior. Accounting for group-size based
strategies and increasing the structural overlap between
interactions of different sizes further promotes coopera-
tion [157].

In the wider context of cooperation studies, a rele-
vant mechanism to support the evolution of pro-social
behavior is group selection, according to which competi-
tion among groups can lead to the evolution of within-
group cooperation [158]. Several works have explored
this mechanism through theoretical models, numerical
simulations, and behavioral experiments, yielding com-
plex results. For instance, while some studies have high-
lighted that group selection indeed leads to the evolution
of in-group cooperation [159, 160], others contend that
this effect arises because group competition introduces
a threshold for victory, acting as an additional incentive,
and it is this alteration in incentives that bolsters cooper-
ative behavior [161]. Although significant, these studies
generally view groups as simple aggregates of individuals,
overlooking the hierarchical dynamics that could signif-

icantly impact group selection in real human societies.
Thus, employing higher-order networks may provide new
insights into how and when group selection fosters the
evolution of in-group cooperation.

Beyond human behavior, higher-order modeling frame-
works have proven successful in studying the coexistence
of species and the stability of ecosystems [162, 163], and
we refer interested readers to a focused review for a com-
plete overview of the field [164]. All in all, the evolution
of pro-social behavior for any system of individuals par-
ticipating in interactions of different sizes for any kind
of collective action problem still remains elusive. Apart
from cooperation, coordination and social learning have
played an important role in cultural evolution in humans.
Future work should investigate more diverse and realis-
tic social encounters at various scales and validate the
models in question using available data.

Truth-telling and other moral behaviors

Group conflicts often arise from moral conflicts [165—
167], making the study of the evolution of morality es-
sential for understanding social conflicts [168]. Moral
conflicts typically exhibit a hierarchical structure, with
various moral positions coalescing under broader macro-
positions, making them naturally suited for representa-
tion in higher-order networks.

A critical dimension of moral behavior is truth-telling,
which is fundamental to human interactions and so-
cial cohesion. Self-serving lies are associated with ad-
verse personal outcomes, such as marital dissatisfaction
[169] and friendship dissolution [170], significant eco-
nomic losses due to tax evasion [171] and insurance fraud
[172], as well as threats to democratic processes due to
the spread of misinformation [173]. Behavioral scien-
tists have developed various paradigms to study truth-
telling, including the die-rolling paradigm [174], the ma-
trix search task [175], the Philip Sidney game [176], and
the sender-receiver game [177]. These experiments typ-
ically involve dyadic interactions. Yet, many real-world
scenarios entail communication from one to many, such as
politicians or journalists addressing the public, or within
groups, like company boards deciding on disclosure of
information [178].

Some theoretical work has investigated one-to-group,
group-to-one, and group-to-group communications [179-
181], revealing that groups exhibit surprisingly sophisti-
cated behaviors that are challenging to classify analyti-
cally. This increase in complexity arises partly because
individuals within a group may interact among them-
selves and groups may be interconnected at a higher level.
To overcome the challenges of mathematical analysis, re-
searchers can turn to numerical simulations. However,
these simulations have predominantly focused on one-
to-one interactions [182, 183]. To date, only one study
has explored the evolution of truth-telling in the sender-
receiver game with one sender and multiple receivers in



higher-order structures [184], finding that truth-telling
may evolve when groups of players (each consisting of
one sender and multiple receivers forming a well-mixed
population) are interconnected in hyperrings, particu-
larly when the size of the hyperedges is small, and in
real-life higher-order structures using the SocioPatterns
database. Another work has examined the evolution of
honesty in sender-receiver games played by one sender
and multiple receivers belonging to communities, whose
members may interact with some probability [185]. The
authors found that the difference between the payoff cor-
responding to guessing the true state of the world and
that of guessing the false state has an inverted-U-shaped
effect on the evolution of truth-telling. We hope future
work will extend these techniques to study the evolution
of lying and truth-telling in various higher-order struc-
tures.

Beyond truth-telling, other moral behaviors such as
trustworthiness in the trust game [186], decisions bal-
ancing equity against efficiency [187], and altruistic pun-
ishment in the ultimatum game [188] are also driven by
moral considerations and often occur within group dy-
namics. Theoretical frameworks like the moral founda-
tions theory and the morality-as-cooperation theory sug-
gest multiple dimensions of morality, many of which in-
volve group interactions [189-192]. While some of these
behaviors have been explored using well-mixed popula-
tions or classical networks, with a focus mainly on altru-
istic punishment [193-198|, ingroup favoritism [199-204],
and trust [205-212], research specifically addressing their
evolution in higher-order networks is limited. We hope
that future research will address this critical gap.

SOCIAL EXPERIMENTS IN THE LAB

The last thirty years have witnessed how behavioral ex-
periments have become the key tool to understand social
behavior on networks [213-215], superseding purely theo-
retical approaches based on paradigms such as homo eco-
nomicus and its perfect rationality. A number of different
contexts and interactions have been studied by means of
experiments in structured populations, including coordi-
nation [216-218], public goods [219], cooperation [220],
ultimatum games [221] or trading [222]. This body of
work has established that strategic behavior in groups
depends on many factors which interact with each other
in complicated manners [223, 224]. Unfortunately, only
a limited number of papers consider relatively large net-
works [225, 226 due to the complexities associated with
running experiments with sizable samples of participants.
On the other hand, all experiments on networks have only
analyzed dyadic interactions: participants choose one of
the available actions in the situation of interest, and that
action affects all its connections in a pairwise manner.
In this context, it should not come as a surprise that, to
the best of our knowledge, there are no experiments on
strategic games on hypergraphs.

This gap on the knowledge about human behavior in
experimental settings must be addressed if experiments
are to become closer to realistic situations. Indeed, it
has to be realized that in the case of groups, there is
no structure in experiments, meaning that the context is
that of a single (typically small) well-mixed population.
On the other hand, the network structure used in exper-
iments reflects more a set of dyadic interactions rather
than people interacting as a group. In the experiments,
people interact with their neighbors in the network, but
this cannot be considered a bona fide group because ev-
ery neighbor interacts with its own neighbors, i.e., there
is no structured interaction at the group level with other
groups and groups do not connect to each other as such.
Hypergraph structures would allow to overcome this lim-
itation and bring experimental designs closer to applica-
tions. This would be the case, for instance, of studies of
cooperation within organizations, [227] where often there
are teams charged with different tasks that cooperate in
groups and not as a result of individual dyadic interac-
tions.

Experiments on strategic interactions on hypergraphs
should be informed by the available knowledge on behav-
ior in group and network setups in the lab. When under-
standing group behavior from the participants’ level, it
is important to take into account a number of features.
First, behavior in groups is affected by individual het-
erogeneity and beliefs about others: voluntary coopera-
tion is inherently fragile, even if most people are not free
riders but conditional cooperators [224]. Second, it has
been shown [228] that initial contributors’ decisions are
affected by the behavior of the group while initial non-
contributors’ decisions are not, while letting individual
behavior be known by the group increases contributions
even in groups consisting only of initial non-contributors.
This type of feedback interactions between information
at two different levels are likely to arise also when inter-
actions take place on hypergraphs with their own group
structure. In this context, it is important to keep in
mind that when groups are large, the manner in which
information is presented (e.g., averages vs histograms)
has strong implications on the distribution of individ-
ual behaviors [229, 230]. On the other hand, when the
strategic situation considered takes nonlinear effects into
account, it has been shown that group size may increase
cooperation in experiments [231, 232|. This may have
implications for hypergraphs, where hyperedges involve
different numbers of individuals and therefore possibly
different levels of cooperation. Network effects will also
have their counterpart depending on organization of hy-
pergraphs. Experiments have proven [233, 234] that the
observed emergent behavior is very sensitive to network
details, such as community structure, centrality distri-
bution and even having an even or odd number of con-
nections. At the same time, the network structure may
make the information complexity increase beyond what
participants can grasp during experiments [222]. It is
then clear that experiments on hypergraphs should begin



with studying how these effects translate to a situation
in which groups are the constituents of the population
structure. Importantly, such experiments would have to
deal with the complexity of the design and a prelimi-
nary but crucial question would be to assess the extent
to which participants understand the structure in which
they are interacting.

CONCLUSIONS AND OUTLOOK

The introduction of higher-order networks has
significantly expanded our understanding of various
social structures and phenomena. This methodology
has enabled a deeper exploration of the topology of
collaboration networks and the temporal dynamics of
contact networks, has revealed new insights on how
groups organize and potential biases in group formation,
and has begun to unveil the multilevel nature of social
processes such as contagion, cooperation, truth-telling
and other moral behaviors. Arguably, this is just the
beginning of a transformation that will touch virtually
every field of research where networks have proven
useful and where group interactions play a role. We
conclude by identifying five novel research areas where
the application of higher-order networks may yield
substantial advancements. These areas are not meant
to be exhaustive but represent major examples where
higher-order networks are likely to bring new insights.

Computational challenges of higher-order social net-
works.  While richer in information, higher-order social
network representations also come with a variety of com-
putational challenges. A first challenge concerns data
collection. While some datasets naturally come in the
shape of hypergraphs, such as in the case of collabora-
tions in science, in some other other cases, even if the
original systems had group interactions, current avail-
able data might be stored in dyadic format [74]. In
this case, reconstructing the original polyadic relational
structure requires additional information, such as fine-
grained temporal resolution for each dyadic ties, so that
cliques formed by co-occurring temporal dyads can be
encoded as hyperedges. Newly-developed inference tech-
niques can help reconstruct and predict groups even from
simple projected graph structure [235], from the statisti-
cal analysis of temporal patterns [28, 236], or consider-
ing the system community structure [33, 34, 237|, using
frameworks based on the higher-order stochastic block
model. We hope that highlighting this challenge will
promote the collection of relational data directly at the
higher-order relevant level. A second challenge relates
to the cost of higher-order representations [238], which
have a higher dimensionality than traditional graphs. A
number of techniques have been developed for efficient
storage and efficient algorithm design [239] to mitigate
the greater cost of higher-order analyses. Traditional
graph representations are often inadequate for hyper-

graphs and simplicial complexes. To support a flexible
set of queries and maximize efficiency, modern software
systems often trade off memory for speed by simultane-
ously maintaining multiple complementary data struc-
tures [40, 41], such as hash tables and sparse incidence
matrices. For storage efficiency, tree-based encodings can
be leveraged to compactly represent shared subsets [240],
particularly when many hyperedges overlap. Approxi-
mate sampling methods offer another strategy for scal-
ing algorithms, enabling computationally intensive tasks,
such as motif detection [30], to be performed efficiently on
large datasets with minimal loss in accuracy. The curse
of higher dimensionality makes understanding when the
structure of higher-order networks can be reduced with-
out critical loss of information an important problem.
Despite first answers from the field of dynamical sys-
tems [241, 242], algorithms should be able to determine
whether a higher-order representation is optimal simply
by looking at the structural patterns of interactions and
redundancies among groups of different orders. A final
challenge concerns the development of a new class of null
models, serving as a baseline against which real-world
higher-order network structures can be compared, and
allowing to understand which higher-order features are
sufficient to explain the observed pattern. While a few
works have already appeared on this matter [88, 243-
247|, we believe that deeper attention should be given
by the community to this topic, as new unexpected is-
sues might arise. For instance, as the sampling space of
higher-order networks is higher than traditional graphs
due to a combinatorial explosion in all possible config-
urations of non-dyadic ties, a deeper exploration of the
ensemble of the randomized configuration is in general
necessary to achieve robust conclusions on the performed
analyses.

Biases in group dynamics. The advantages offered by
higher-order interactions paradigm come with some hid-
den costs. Even though groups offer cumulative advan-
tages, there might be biases and inequalities inherent to
the group dynamics. The formation of groups in networks
can have uneven effects when some groups are systemat-
ically smaller than other groups (minorities), whereby
their access to resources and information in networks is
limited due to the structural constraints [248] that group-
level homophily imposes. These structural constraints
also affect network-based ranking and recommender al-
gorithms used in social media [249], potentially reinforc-
ing inequalities in AT systems [250]. Furthermore, ideas
from social balance theory [251] concerning the differ-
ent structural role of friendship ties and antagonistic ties
should be taken into account while modeling group for-
mation and group-level dynamics. Higher-order interac-
tions might also affect the rich-club organization of so-
cial hubs and core- periphery structure which in turn
affect the formation of the super-connected elites. In
this way, higher-order interactions can amplify the in-
fluence of dominant groups, as power and resources tend
to concentrate in well-connected clusters. The unequal



distribution of resources combined with network effects
increases inequalities for minorities in a nonlinear way
[252]. To overcome such inequalities that are driven by
higher-order effects in networks, computational models
show promising new directions for testing the effective-
ness of a variety of policies in social networks and online
algorithms such as the influence of affirmative action and
behavioral change in reducing inequalities [253] or imple-
menting fairness methods on network-based online algo-
rithms. Future work concerning group formation mecha-
nisms should aim to integrate these inherent systematic
biases into the models to bring them closer to understand
the inequalities present in real-life.

Team dynamics. Many scientific and societal break-
through cannot be obtained by single individuals, but
need collective efforts of larger teams [56, 62, 254].
Despite the growing interest in teams, from science to
management studies most research has so far consid-
ered teams mostly as static entities, neglecting their
dynamics and temporal evolution. For instance, in
science of science most analysis consider the set of
co-authors of a scientific article as an entirely different
unit, and link their compositional properties to success
regardless of their previous collaboration history. In
organization theory, some studies have performed
multi-period observations of team activities through
surveys of team members, but this approach is clearly
limited to collect fine-grained data about team activities
over time [255]. New temporal data from science
to open-source software developments [256], escape
rooms [257] have already opened the way to study
temporal individual trajectories of networked individuals
involved in group interactions. Beyond this, modeling
frameworks such as temporal hypergraphs applied to
management and innovation systems, and even sports,
will allow to characterize the dynamics and evolution
of entire teams over time, as well as their interplay and
interactions, allowing to better understand the collective
nature and emergence of embeddedness [258], social
capital [259] and Matthew effects [260] in social networks.

Cumulative culture evolution. Human culture is
uniquely complex due to its cumulative nature, shaped
by contributions from many individuals and requiring re-
combination of information [261]. Higher-order interac-
tion frameworks offer new insights into cumulative cul-
tural evolution, including how knowledge is shared and
innovated within hunter-gatherer societies [262]. Hunter-
gatherer groups are key to understanding cumulative cul-
ture, as human cognitive and cooperative skills evolved
within the foraging niche over thousands of years. [263—
265]. For example, through generations of collective
problem-solving, Congo hunter-gatherers developed ex-
tensive medicinal plants knowledge, even though no sin-
gle individual holds all of this information [266]. Like
most Western cultural traits, hunter-gatherer culture was
built collectively over generations. Higher-order network
models have potential to clarify the group dynamics that
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drive cultural accumulation beyond dyadic exchanges.
They could trace how information flows within hunt-
ing groups, storytelling events, rituals, or collaborative
tool-making. These models may also identify the opti-
mal group sizes, compositions, or interactions that en-
hance knowledge transfer and foster innovation. [267—
269]. Temporal hypergraphs, for example, can monitor
how changes in group compositions influence cultural re-
silience and innovation, highlighting the role of intergen-
erational or interpopulation transfers [270]. These pro-
cesses may impact the rates of innovation and recombi-
nation, leading to cultural complexification. Future re-
search should explore how group-level homophily or het-
erophily affects access to cultural information. Compu-
tational models incorporating higher-order effects could
simulate how group structures influence cultural evolu-
tion. By focusing on these dynamics, researchers can de-
velop more comprehensive theories, addressing key ques-
tions in human evolution, such as why cumulative culture
emerged in the hunter-gatherer niche and remains rare in
other species.

The evolution of languages. Languages typically
emerge from evolutionary dynamics aimed at promot-
ing communication among people [271, 272]. Researchers
have applied evolutionary game theory to examine how
language develops within networks [273-276]. Yet, the
role of higher-order networks in the evolution of language
has thus far received little attention. Some aspects of
the evolution of language may be better understood by
taking into account also group interactions rather than
only dyadic interactions. For example, when groups
develop unique linguistic features and dialects to mark
boundaries with other groups [277]. Additionally, recent
advancements in behavioral economics suggest that lin-
guistic content significantly influences people’s behavior
[278], indicating a potential coevolution of language and
behavior [279, 280]. Studying the evolution of language,
behavior, and their interaction through higher-order net-
works therefore represents a promising area of future re-
search.

Policy making. Policy interventions are critical for
addressing collective challenges where individual inter-
ests may conflict with group welfare, such as climate
change [281], shared marine resource management [282],
and artificial intelligence [283]. Recent years have seen
significant moves towards the scientification of policy-
making through so-called mega-studies, which test nu-
merous potential interventions on the same participant
pool to identify the most effective strategies [284-286].
However, while these studies provide an instant snap-
shot of the likely effects of some interventions, they do
not take into account the dynamic and multilevel struc-
ture of the issue. Moreover, it is virtually impossible to
test all potential interventions in behavioral experiments.
Higher-order networks may revolutionize policymaking,
as simulations on these networks can potentially com-
pare the effects of many interventions at once, taking into
account evolutionary and multilevel dynamics, therefore



providing theory-driven suggestions for efficient policy
interventions. Additionally, behavioral experiments in-
volving higher-order networks could offer new insights
into how the effectiveness of interventions propagate in
human societies. For instance, a recent study evaluated
the effectiveness of a large-scale health education pro-
gram through friendship-nomination process inspired by
network-based social contagion dynamics. The findings
based on indicated that targeting via friendship nom-
ination decreased the quantity of households required
to achieve predetermined levels of village-wide adoption
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[287]. Future work might exploit the richness of higher-
order contagion processes [125] for even more effective
results.

Altogether, our perspective unveils the need to move
beyond dyadic approaches to capture the relational struc-
ture and dynamics of real-world social systems. We hope
our work will stimulate more research on higher-order
social networks to better understand how individuals as-
semble together, and how group interactions shape col-
lective human behavior.
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FIG. 1: Higher-order representations of social network data. Given a dataset with non-dyadic interactions, they can be
encoded via hyperedges or simplices. A k-hyperedge encodes an interaction among k individuals. A hypergraph, a collection of
nodes and hyperedges, is the most flexible way to represent higher-order social networks. A simplicial complex, a collection of
simplices, constraints the representation by enforcing the condition to have all possible subsets of the highest order interaction
also included in the complex. This leads to inaccuracies, since all lower-order interactions are automatically considered, losing
the ability to distinguish between overlapping and non-overlapping interactions (red dotted circle). A pairwise representation is
obtained by projecting the group interactions into cliques of pairwise interactions, thus making it impossible to retrieve the size
of the original groups (marked in red dotted circles). A bipartite projection allows to maintain the distinguishability between
different groups, but here groups are represented in an indirect way, as a layer of nodes rather than edges / hyperedges.
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FIG. 3: Temporal face-to-face contact hypergraphs.
Time-resolved contact data can be described by a temporal
FIG. 2: Collaboration hypergraphs from affiliation  hypergraph, where hyperedges describing proximity or face-

data. Hypergraph of scientific collaborations, where each to-face interactions among individuals are extracted at each
hyperedge represents the set of co-authors of an article. observation time.
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FIG. 4: Higher-order models of group formation. (A)
Agent-based model describing the evolution of face-to-face in-
teractions in physical space. An agent considers the groups
lying within a spatial range (dotted circle on top), and de-
cides to move and join one of them based on their attrac-
tiveness (dotted arrow at the bottom shows the movement).
Group attractiveness depends on the properties of the group,
such as its size and composition (here pink and blue can de-
note gender). (B) Initial snapshot (top) of the hypergraph
where nodes with different inherent attributes are connected
to each other through edges and hyperedges. (bottom) With
time, the nodes rewire themselves dictated by group biases
and preferences to form highly segregated hypergraph with
high homophily.
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FIG. 5: Models of social contagion. Social contagion models, where individuals can be either in a susceptible S or infected
I state. (A) In simple contagion each link acts as an independent source of transmission, over which contagion occurs with
probability 8. (B) In complex contagion multiple exposures are required for transmission, and contagion happens if a sufficiently
high fraction 6 of contacts is infected. Nevertheless, the exact social structure is neglected, and all neighbors of a node are
considered together regardless of whether they influenced a node as part of a group or not. (C) The microscopic structure of
groups is considered in higher-order contagion models, where groups modeled as hyperedges can have different infection rate
based on their size, allowing to model with probability Sa stronger (or weaker) transmission occurring in groups.
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FIG. 7: Box 1: Higher-order analysis of collaboration hypergraphs. We demonstrate the power of higher-order
network by analyzing collaboration patterns in different scientific domains, investigating arXiv co-authorship data (all papers
uploaded between 2007 and 2022) in the fields of physics, computer science, statistics, and mathematics. For each domain,
we construct a hypergraph H(V, &), where each hyperedge denotes the set of co-authors participating in a paper. In the
following, we illustrate a variety of higher-order measures and approaches of increasing complexity, capturing different facets
of the architecture of real-world collaboration systems. (A) displays the probability distribution of interaction sizes for various
disciplines. Math papers are typically written by the smallest teams. By contrast, physics papers are often produced by
bigger collaborative efforts, as evidenced by the slower decay of P(s). Switching from single papers to career trajectories of
the authors, for each author (B) shows the number of unique coauthors as a function of their total number of papers. For
a fixed number of interactions, we observe a hierarchy among fields, with mathematicians forming fewer unique connections
in their career. Note the inversion between physicists and computer scientists compared to the previous plot, indicating that
while physicist tend to work in larger teams, they also have more persistent collaboration patterns than computer scientists.
Analyzing patterns of interactions at the micro-scale, (C) displays the abundance of different higher-order motifs for subgraphs
of three authors [29]. Motifs IT and VI reveal that it is frequent for statisticians and mathematicians to work in pairs (II), and
when a larger team is formed, its members typically also collaborate through pairwise interactions (VI), suggesting the presence
of a mechanism known as simplicial closure [28]. By contrast, motif III shows that in physics and computer science groups
do not require the presence of underlying dyadic ties. These findings are confirmed by looking at collaboration patterns at a
larger scale by computing a measure of higher-order nestedness, which evaluates how much smaller groups are encapsulated
in larger ones (D) [288] . Due to the cost of processing high dimensional data, it can be convenient to reduce a higher-order
network by providing a simplified representation which still captures its essential higher-order structure. (E) shows the number
of statistically significant co-occurring groups of co-authors across scientific domains, comparing their publication rate against
a suitable null model which preserves the activity of each author [63]. Focusing on physics — the domain whose collaboration
patterns display strongest higher-order character — (F') illustrates the higher-order dimension of homophily in social systems,
evaluating gendered interactions separately for dyads and groups [99]. By exploiting the temporal nature of the data, (G)
quantifies the transition probability P(s¢+1|s:) of switching team size in two consecutive papers [39]. For physics, authors who
work in larger collaborations rarely revert back to smaller teams. By contrast, mathematicians more regularly alternate between
groups of different sizes (not shown). Finally we illustrate the power of higher-order networks to model social phenomena such
as contagion processes [125], finding that the spread of ideas and innovation on the collaboration hypergraph can be promoted
by incorporating group mechanisms to describe peer pressure (H).
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