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Indirect social influence and diffusion of
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A fundamental feature for understanding the diffusion of innovations through a social group
is the manner in which we are influenced by our own social interactions. It is usually assumed
that only direct interactions, those that form our social network, determine the dynamics
of adopting innovations. Here, we test this assumption by experimentally and theoretically
studying the role of direct and indirect influences in the adoption of innovations. We perform
experiments specifically designed to capture the influence that an individual receives from
their direct social ties as well as from those socially close to them, as a function of the
separation they have in their social network. The results of 21 experimental sessions with
more than 590 participants show that the rate of adoption of an innovation is significantly
influenced not only by our nearest neighbors but also by the second and third levels of
influences an adopter has. Using a mathematical model that accounts for both direct and
indirect interactions in a network, we fit the experimental results and determine the way in
which influences decay with social distance. The results indicate that the strength of peer
pressure on an adopter coming from its second and third circles of influence is approximately
2/3 and 1/3, respectively, relative to their closest neighbors. Our results strongly suggest that
the adoption of an innovation is a complex process in which an individual feels significant
pressure not only from their direct ties but also by those socially close to them.

Social norms | Social networks | Diffusion of innovations | Path-Laplacians | Indirect social
influence

In a world of traditions, an innovation is an idea, practice or object that is perceived
as new by an individual (1, p.12). The adoption of an innovation is not a trivial

process, sometimes requiring a lengthy period of time. Once an innovation of
interest arises, individuals and organizations often need to accelerate their adoption
(2–5) for reasons that go from public health policies (6, 7) to marketing ones (8, 9).
Therefore, understanding the diffusion of innovations, i.e., how innovations are
“communicated through certain channels over time among the members of a social
group” (1, p.5) is of vital importance in many areas of social sciences research
(8, 10–14). Starting with the seminal book of Rogers, first published in the 1960’s
(1), several works have attempted to find mechanisms for accelerating the diffusion of
innovations, either from the theoretical or the experimental point of view (3, 15–18).

A specific, but quite generic case of diffusion of an innovation relies on
communication channels formed by interpersonal relations, by means of which
an individual persuades others to accept a new idea (19–21). In principle, this kind
of communication channel may be understood as a social network in which pairs of
individuals are connected if they share an interpersonal communication (3, 22), be
it face-to-face exchange or via e-communication, such as email or social media (23).
However, as far as diffusion of innovations is concerned, the communication structure
may be so complex that it goes beyond the interpersonal channels of communication
recorded in the social network structure (24, 25). Indeed, as Rogers put it, “even
the members of the system may not understand the communication structure of
which they are part.” (1, p.337). One of the reasons for which the network of
interpersonal ties does not capture the totality of the communication channels is
that individuals can learn from observation of other people’s behavior by means
of non-verbal exchange of information. This mimicry of other’s behaviors conforms
a phenomenon known as “social” or “observational” learning (26–28). In fact, even
knowledge about certain statistics can act as a trigger of observational learning.
One example is provided by Åberg (29) who cited the case of local demographic as
an important influence on the risk of getting divorced. That is, knowing that some
people not different from me have a certain behavior makes me copy them (30–33).
Several similar examples are given in (34). Here we consider that both verbal
and nonverbal communication is transmitted through the edges of the network,
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which we will call direct communication. However, nonverbal
communication can also occurs in an indirect way. That is,
while the direct transmission between A and C in the path
A-B-C implies the communication from A to B and then from
B to C, the indirect communication can occurs from A to C
without involving B.

A fundamental research problem is then how to account for
the combination of interpersonal channels and observational
learning into a unified network representation of communi-
cation channels for the diffusion of innovations. Here we
take advantage of the seminal ideas of Granovetter (35) who
assumes that all decision makers are influenced by everyone
else in an “all see all” network. However, not everyone is
equally considered in these interactions (36) as people often
respond most to the behaviors of those similar to them in
terms of common beliefs, education, socioeconomic status,
and so forth (37). Thus, Granovetter (38) proposed that there
is a range of ties with different strengths, where “the strength
of a tie is a (probably linear) combination of the amount of
time, emotional intensity, the intimacy (mutual confiding)
and the reciprocal services that characterize the tie”. Here
we interpret these ideas as following. If G is a network such
as (i, j) is an edge but (i, k) is not, then we consider the
weighted complete network where (i, j) has weight equal to
one and (i, k) has weight w < 1, such that if w = 0 we recover
the original topology of the network (see S.I.). The problem
is again how to quantify these strengths of ties. In this
work, we use the ideas of Simmel about social distance (39).
According to Simmel, social distance measures the nearness
or intimacy that an individual or group feels towards another
individual. Therefore, it is direct to associate the concept of
social distance to that of communication proximity, due to
their natural equivalence.

In this work, we analyze the diffusion of innovations by
considering a situation in which an agent, who is influenced by
their interpersonal ties in a social network, is also influenced
by any other individual in the network with a strength that
decays with the social distance separating them. Here, we
consider the social distance to be exactly the number of ties
that separate two individuals in their network of interpersonal
channels, this is the shortest path distance between the two
vertices representing them in the network. That is, the
individuals connected to a given agent form their first circle
of influences (see panel A in Fig. 1). Those individuals
separated by two ties form the second circle of influences,
and so forth. Then, the traditional view of the process of
diffusion in which an innovation is communicated through
several iterations between agents directly interconnected by
interpersonal ties, for instance, from A to B and then from B
to C and from C to D (see panel B in Fig. 1), is confronted
with the model in which the diffusion process occurs via
direct plus indirect influences, where the last take place via
the second, third, etc. circles of influences (see panel C in Fig.
1), such as A receives direct influence from B, but also indirect
influences from C and D, where by direct we mean through the
edges of the network and by indirect we mean ”through-space”
non-verbal interactions. The framework for our research is
a study of the adoption of a drug between physicians in a
hospital (40): based on this work, we designed and conducted
a series of experiments to empirically measure how long-
distance connections affect the adoption of innovations in a

Fig. 1. (a) Representation of the cone of influences of an individual located at
the top of the cone. The different kind of interactions are colored differently. (b)
Illustration of a hypothetical through-edges diffusive process occurring at the network.
(c) Illustration of a hypothetical diffusive process involving both through-edges and
through-space interactions in the network.

social network. Using the mathematical framework developed
in (17, 41–43), we can measure the strength of such non-
direct connections compared to the effect of direct friends in
such adoption process. Therefore, we are following Rogers’
suggestion that “Alternative research approaches to post
hoc data gathering about how an innovation has diffused
should be explored. ”(1). While some recent experiments
have been done in this field (6, 13, 25, 44, 45), the effect of
non-direct relationships has only been studied through data
collection of studies not specifically designed to such purpose
(24, 46). Therefore, our work fills the gap of experimental
research explicitly designed to address the issue of non-direct
connections on the diffusion of innovations.

Experiment and model

Experimental Setup. As stated above, to investigate the
existence and strength of influences–direct influences only or
direct plus indirect ones–on the adoption of an innovation, we
designed the following experiment. A group of participants
is placed in all nodes of a network. At each round of the
experiment, every participant has to choose between two
colors, one which is assigned to the majority of participants
and another one assigned only to a small number of them (but
the respective fractions are not known to the participants).
The participants receive a monetary reward (see Methods
section A for details) if they reach a global consensus in one
of the two colors. The incentive is inversely proportional
to the number of rounds they need to reach this steady
state. In this scenario, in the initial round, the color of
the majority represents the “tradition”, while the color of
the minority represents an “innovation”. To stimulate the
adoption of the innovation, participants receive a greater
incentive if a consensus is reached on the initial minority
color. Although the proportion of vertices with each of these
colors evolves with time, we will refer to “majority” and
“minority” throughout the experiment. In each session of the
experiment we randomly assigned some pairs of participants
to role as friends. Pairs of friends form the edges which are
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Fig. 2. Schematic illustration of the experimental setup used in this work. The first setting consists in showing the participants information about the color chosen by two other
subjects directly connected to them in the network. In the k-th settings (k = 2, 3, 4 for settings II, III, IV, respectively) the subjects observe the colors of two participants
connected to them and two others in their k-th influence circle. The colors in every setting change to avoid bias in the color selection: setting I (blue and yellow); setting II
(magenta and green); setting III (orange and red); setting IV (purple and lilac). The first color in every pair is always the one of the “minority ”. In the figure, the vertices observed
by the subject are “illuminated”(with halo), while the others in the same circle are shown with pale colors (they are not observed at all by the subjects).

created by imitating one network previously studied for the
diffusion of an innovation in the real-world (40).

Let us now discuss how the initial choice of colors is
assigned to the participants. Assuming that only 13% of the
experimental subjects were early adopters, we initialized all
sessions with 27 participants having the majority color and
only 4 with the minority one. Once the participants have
been assigned a color, the experiment takes place in four
different settings. In each one of them, every subject sees a
picture of the network, presented as an ego network centered
at themselves, with vertices at longer distances being smaller
than the ones which are nearer to them. The picture they
observe is similar to the one in Fig. 2 where only limited
information about the colors that every other vertex has is
provided to them. The exact screenshots of the experiment
can be found in the Supplementary Material. A round finishes
when all participants have made their choice.At the end of
every round, participants see again a similar picture of a
fixed amount of randomly chosen neighbors, with updated
information about the colors they selected in the round.

In setting I, every subject had information about the
colors of two of the agent’s nearest neighbors. In setting
II, such information consisted of the colors of two of the
agent’s nearest neighbors and two of the participants who
are at distance two from the target. Similarly, for settings
III and IV, the information provided was about two nearest
neighbors and two in layer three or four, respectively (cf. Fig.
2). Every experimental session consists of a sequence of the
four settings, each one comprising in turn of 13-15 rounds. A
round is defined as the step in which every participant makes
a decision, either keeping or changing the color currently
assigned to that agent. Although participants knew that
settings would end after at most 15 rounds, they did not know
the exact maximum number of rounds used in each setting. In
each session, the order of the settings was randomized to avoid
order effects. Further details of the experimental design can
be found under Methods, section A, and the Supplementary
Material.

Theoretical Model. In order to understand and analyze our
experiments, we will compare them with the following
analytical model (17, 41–43). Let us assume that every agent
i has a propensity ui (0) = u0

i to adopt an innovation at an
initial time t = 0. Then, the adoption of this innovation in
a network is a consensus process in which the change of the
state of subject i at a given time, u̇i (t), is determined by

u̇i (t) = γNN

∑
NN

[uj (t) − ui (t)] , [1]

where γNN represents the “strength” of the nearest neighbors
(NN) interactions, i.e., those vertices in the network directly
connected among them. If we represent the states of every
individual at a given time in the vector u (t), we can write

u̇ (t) = −γNN LNN u (t) ; u (0) = u0, [2]

where LNN is the Laplacian matrix of the network operating
over the pairs of NN individuals. This is understood as
an operator on a Hilbert space on the set of vertices of
the network acting on a function f defined in the same
space and evaluated on the vertex v as: (LNN f) (v) :=∑

NN
[f (w) − f (v)], where the sum is over all the NN of

v.
The solution of this equation is: u (t) = e−tγNN LNN u0,

and the steady state is the one in which every vertex has a
state equal to the average of the initial condition. This
equation represents the diffusion of the adoption of the
innovation across the network, assuming that the process
is continuous in time as well as in which the state of the
individuals may take a continuous range of values. However,
in an experimental setup as the one described before the
time is discrete as it is determined by the rounds taken to
reach the consensus and the results are binary, i.e., an agent
either adopt or does not adopt the innovation. Therefore,
here we discretize time as follows. For any given time T
and a number of rounds r, we equidistribute r points in the
interval [0, T ], such that the discretized solution is equal to
the continuous solution at those times. We also proceed to

Miranda et al. PNAS — August 15, 2024 — vol. XXX — no. XX — 3
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discretize the output of the model by introducing a threshold
parameter: △ · ui (tc), where △ ∈ [0, 1] and ui (tc) is the
state of the vertex i when the consensus was reached, which
is equal to the average of the entries of u0. This means that
when an agent has a propensity to adopt the innovation larger
than this threshold it is assumed that the agent adopts the
innovation. Otherwise, it is assumed that it has not adopted
the innovation.

To account for the influence of the individuals in the
second circle of influence of the agent i we can define the
Laplacian operator (LNNN f) (i) :=

∑
NNN

[f (j) − f (i)],
where now the sum is carried out over all next nearest
neighbors (NNN) of i, i.e., those separated by two edges
in the network. Similarly, we can extend this definition to
the third, fourth and so for NN of a given agent, such that
we can write the innovation diffusion model as:

u̇ (t) = − γNN LNN u (t) − γNNN LNNN u (t) − · · ·
− γDLDu (t) ; [3]

u(0) =u0,

where γNNN is the “strength” of the interactions between
next nearest neighbors and D designates the diameter of
the network, i.e., the longest shortest path between any pair
of vertices. The intuition dictates that the strength of the
interaction decays with the separation between the pairs of
agents in the network, i.e., γNN > γNNN > · · · > γD. In
the experiments designed in this work the diameter of the
network is five, i.e., D = 5, and we can use the following
notation accordingly: c1 = γNN ; c2 = γNNN ; . . .. Similarly,
we designate L1 = LNN ; L2 = LNNN , etc., where, as defined
before, (Ldf) (v) :=

∑
d(v.w)=d

[f (w) − f (v)]. Let us fit
γNN = c1 = 1, such that we can write:

u̇ (t) = −

(
L1 +

D∑
d=2

cdLd

)
u (t) ; u (0) = u0. [4]

Experimental results

We recruited 592 participants from the IBSEN subject pool
at Universidad Carlos III de Madrid (UC3M) to participate
in a series of 21 experimental sessions. The research was
approved by the Ethics Committee of UC3M and was carried
out with the approved plan. The average age was 30.4 years
(median 25, mode 22). The gender representation was 63.8%
female, 35.9% male, and 0.3% non-binary. The distribution
of gender and age through the experimental sessions is shown
in the Supplementary Information in Table S1 and Figs. S14
and S15.

To analyze the experimental results from a realistic
perspective, we considered that a subject who has adopted
the “minority” color becomes an adopter of the innovation
from that round on. This definition is intended to take into
account the differences in time between the experimental
settings and the real adoption of an innovation. While the
first takes minutes, the second can take years, and once a
subject has adopted an innovation in the real world, it will
take long time until they can abandon it, in case they ever
do so. In 14 of the 21 experimental sessions, the participants
reached consensus in setting I, and for settings II-IV, the
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Fig. 3. Average percentage of adopters (including bots) as a function of the
experimental rounds, per Setting. Shaded areas represent standard deviations.

global consensus was reached in 16 of the 21 sessions (see
Fig. S9 in the Supplementary Information). This means
that in some of the 21 experiments there was at least one
individual (stubborn) who did not join the consensus of the
group for the duration of the setting. In total there were 11,
6, 10 and 8 stubborn individuals in settings I, II, III and IV,
respectively, which clearly points out to the lack of any bias
in the number of such individuals in relation to the type of
social interactions considered in the experiments.

In Fig. 3 we illustrate the cumulative distributions of the
proportion of adopters of the innovation versus round for each
of the four settings considered here and averaged over the 21
experimental sessions. In sessions where most participants
reached consensus in round x but some were stubborn, we
adjust the Fig. 3 plot to show global consensus at round x+2
for aesthetic purposes. In general, the percentages of adopters
in the second round are approximately the same for the four
settings (for round I all the percentages are exactly the same
as we initialize all the experiments with this percentage of
adopters). However, for rounds 3-5 these percentages show
the largest differences between the four settings. In round 3,
the percentage of adopters in setting I is about 84.5%, while
for settings II and III it grows to 88.8%, and for setting IV it is
85.4%. In round 4 these percentages are: 89.2%, 92.9%, 93.4%
and 91.1%, respectively, and for round 5 they are: 92.9%,
96.2%, 96.2% and 94.2%. Although these values are average
percentages that may be hiding the specifics of each session,
(see further analysis), they clearly indicate an acceleration in
the number of adopters in settings II-IV relative to setting I,
particularly for settings II and III. We would like to remark
that these results seem to point to the fact that the second
and third neighbors of an agent significantly influence their
decision in choosing an innovation. Such influence seems to
drop for the fourth circle of influences.

Let us now discuss the fit of the experimental results to our
model. To that end, we proceed by considering the individual
experiments. For each setting, we fit the results of each of the
experimental sessions to find the parameters c2, c3 and c4 as
well as to find the values of △ (the value of u (t) that triggers
the adoption of the innovation) and T (the time equivalent
to the number of rounds in the experiment) that best fit the
data as detailed in Methods section B.
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Fig. 4. Proportion of adopters (dots) and their theoretically expected behavior (solid
lines) as a function of the rounds for all the experimental sessions (in colors) and
the different settings: setting I in upper left subplot, setting II in upper right subplot,
setting III in lower left subplot and setting IV in lower right subplot.

In Fig. 4 we illustrate the results of the fitting procedure
for the four settings in the 21 experiments. The experimental
data is visualized as points of colors representing each
experimental session. The best fits obtained by the procedure
described previously are illustrated as curves of the same
colors as those of the data points. As can be seen in the
plots, the fittings are much better for the initial times of the
time evolution of the adoption procedure than for the final
ones. The reason is that, as mentioned before, in several
experimental sessions, there were stubborn participants who
never joined the consensus state followed by the large majority
of subjects. On the contrary, the diffusion model assumes
that every participant is predisposed to reach the consensus
state. In any event, we have analyzed our experimental
data by removing outliers that are basically coincident
with the presence of stubborn subjects, and the results are
approximately the same (see the Methods section D). As there
are theoretical models that take into account the presence of
stubborn participants, we maintain the general idea of using
a diffusion model as our main goal here is to investigate the
role of indirect peers pressure in the adoption of innovations.
Further studies can be designed to study models in which
stubborn participants are explicitly considered.

From the perspective of accounting for the direct and
indirect influences of peers on the adoption of an innovation,
the parameters cd are the most relevant. In Fig. 5 we
illustrate the distributions of the parameters c2 (setting II),
c3 (setting III), and c4 (setting IV), obtained from the best
fittings of the experimental data to the models of direct plus
indirect influences on the network. The values of the mean
and standard deviations of these coefficients are as follows:
c2 = 0.651 ± 0.354; c3 = 0.373 ± 0.427; c4 = 0.513 ± 0.420.
We recall that the strength of direct influences is c1 = 1.

We then check whether the differences between the means
of these coefficients are significant according to their P -values,
i.e., the probability of obtaining the observed difference
between the samples if the null hypotheses were true. The
null hypothesis states that the difference between the averages
is 0, that is, there is no difference. We obtained: p (c2, c3) =
0.0269, p (c2, c4) = 0.256, p (c3, c4) = 0.290. Therefore, the
only significant difference, i.e., p < 0.05, is between the
coefficients that represent the influences of the second and
third circles, but not between the second or third with the
fourth, where there is no empirical evidence to reject the null
hypothesis.

This lack of significant difference between the means of
c4 and the other two coefficients could be due to several
experimental factors that cannot be explained with the
information that we have obtained from them. Consequently,
we eliminate the results concerning the influence of the fourth
circle of influence and focus on the fact that our results
indicate that there is a relatively large influence of the second
NN on the adoption of an innovation by an agent, which is on
average 65% as strong as the direct influence of peers, and a
relatively small, but not negligible, influence of the third NN,
which is on average 37% as strong as the direct interaction.
We can then write an approximate model that describes the
results of our experiments as follows:

u̇ (t) ≈ − (L1 + (0.651 ± 0.354) L2 + (0.373 ± 0.427) L3) u (t) ;
u(0) =u0. [5]

The empirical model (5) reflects the fact that the strength
of the influences decays with the increase in the social distance
(measured here as the shortest path) between the subjects.
This model can be approximated very well by considering
that the coefficients cd are indeed a linear function of the
distance, such that we can write:

u̇ (t) ≈ −
D∑

d=1

[(4 − d

3

)
Ld

]
u (t) ; u (0) = u0. [6]

Using this approximation we can say that the strength of
the interactions between a subject and its second circle of
influences is about 2/3 of that with their closest neighbors,
and those in the third circle have an influence which is
about 1/3 of the ones between NN. Whether this is a general
expression for other cases of diffusive adoption of innovations
is something which should be taken with prudence and
analyzed in individual cases. Linear decay models have
previously been used to consider social effects, such as rumor
transmission in a network, where an exponentially truncated
linear decay function is used to characterize the decay such
that if the acceptance time is small, the decay function is
dominated by a linear decay function (47) (see also (48, 49)).
Other kinds of decay are also studied in the Supplementary
Information.

To gather further evidence on the role of non-direct
influences, we now focus on the individual decisions. We
want to unveil which pieces of information are people using
to make their decisions (whether to choose the innovation
color or not). In order to do so, we study the problem as a
classification problem, where our aim is to predict the color a
person chose as function of the information available: whether
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first neighbors with the innovation color, and (4) percentage of n-distance neighbors
with the innovation color.

people had the innovation as their initial color, whether the
innovation color is the majority color seen, the percentage
of their first neighbors with the innovation color, and the
percentage of n-distance neighbors with the innovation color.
Then, the chosen color is the dependent variable and the four
pieces of information are the features or independent variables.
We use Random Forests as classification technique and the
feature importance analysis (see the section of Methods C
for details).

Our first result is that the color that a person chooses
in each round can be predicted with high accuracy (84%).
Subsequently, when we study the feature importance of this
classification problem, i.e., the contribution of each piece
of information to predict people’s decisions, we see that
the importance of the four pieces of information is different
depending on the experimental setting (see Fig. 6).

As can be seen in the plot, the initial color assigned to the
participants (feature 1) is irrelevant to people’s decisions.
In the first setting, participants have no information of
their neighbors at distances bigger than one, and hence
feature is being unimportant in this setting. The most
important feature is whether the direct neighbors shown

to them have acquired the innovation or not. It is twice as
important as the majority opinion (feature 2). In settings II
to IV, the information of n-distance neighbors is relevant for
the decisions, and, notably, this information becomes very
important. In setting II, with direct neighbors and neighbors
at distance two, the most important variable is still the direct
neighbors information; four times more important than the
2-distance information. In this setting, the information of
the majority (feature 3) is irrelevant. In settings III and IV,
there is a decrease in the importance of the first neighbors
information in favor of the importance of the majority and the
n-distance neighbors information. This suggests that people
are taking the whole picture into account when making their
decisions.

It is worth noting that we cannot discard the potential
effects of visual biases in the results observed here. It has been
previously shown that potential biases can be introduced in
experiments due to the different operational mechanisms for
color and location, as well as for the increment in complexity
due to combined use of shape and color (although here we
maintain the same shape of the figures) (50). Other potential
sources of biases include the observed fact (51) that objects
that are highly salient and stand out from the background
may immediately receive attention priority. Therefore, further
experiments including potential psychological biases may be
designed to investigate these potential factors.

In general, the analysis suggests that the n-distance
information influences the adoption of innovations, and this
is more relevant as the information present is from higher
distances.

Discussion

In this paper, we have provided solid evidence pointing out
to the fact that indirect influences play a fundamental role
in the diffusion of innovations, a key process in a globalized
technological society such as the current one. The results
of an experiment specifically designed to probe into this
question demonstrate that, as summarized in Fig. 7, the
adoption of the innovation by about 60% of participants in
our experiments may take around five times less steps if we
allow them to see the influence of those socially close but not
connected to them. The situation is even more dramatic if we
consider the times at which 80% of the experimental subjects
adopted the innovation. In this case, the reduction of time is
more than 10-fold under the indirect influence of peers: In
practical terms, this means that an innovation which would
take around a year to be adopted under direct influences only,
would be adopted in about one month under the joint effect of
direct and indirect influences. We note also that the diffusion
of innovation goes faster in the first stages of the diffusion
process if information on long-range distance is present; see
setting III and IV curves in Fig. 3. Further, independent
evidence that information is indeed the mechanism behind
the acceleration of diffusion of the innovation comes from a
feature analysis that reveals the way participants weigh their
knowledge of the social context. All in all, the experimental
evidence sends a clear message with practical implications:
diffusion of innovations can only be properly understood if
the influence of people at different levels of social distance is
taken into account.
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As an additional illustration of how such indirect influences
can change the rate of diffusion of an innovation, we do the
following theoretical experiment. By considering the same
network studied here experimentally, we tune the indirect
influences without changing the direct interactions between
the agents. We tune these influences simply by changing the
coefficient cd which determines the weight that the not-direct
influences have on a given agent. In Fig. 7 we illustrate the
results where we also plot the experimental results obtained
here for no indirect influences as well as for direct+indirect
ones, in which the coefficient fitted to the experimental data
is cd = 4−d

3 . When we increase such indirect influences to
cd = 5−d

4 or to cd = 2
1+d

, the results are obvious: a significant
increase of the diffusive dynamics in which the times to adopt
the innovation are significantly reduced.

One interesting question arising from our experimental
results is the lack of differences between the coefficients
for the fourth neighbor influence and the coefficient for the
second and third neighbors. While, as already mentioned,
this may be an effect of sample size or, perhaps, of the
network size, it may also be the case that the weight we
give to the influence of socially distant contacts saturates,
meaning that beyond the first two or three layers of contacts
we take in the input of further ones in the same manner. This
might arise as a consequence of limited cognitive capabilities:
in a general situation in the population at large, we will
have many more contacts as social distance increases, and
we are thus led to consider them in a less specific manner.
Remarkably, these results coincide with those reported by
Christakis and coworkers who observed that the risks of
spreading obesity (52), smoking behavior (53), happiness
(54), and alcohol consumption behavior (55) are influenced
by individuals up to three degrees of separation between each
other. They observed that by the fourth degree of separation
there was no excess relationship between individuals in the
large social network analyzed over a period of 32 years.
Further experiments in larger networks would help clarify
this point, although it must be taken into account that that
would require a large sample of subjects that would play
simultaneously with the logistic challenge that implies (56).

In terms of real-world impact, our results indicate that
acting on indirect influences could change very significantly
the adoption rates of innovations. Mass media has been
frequently identified as a principal actor of indirect influences.
By this means, for instance, teenagers in one country can
observe the attitudes and behaviors of others in a different
one, copying them for good or for bad. Therefore, mass
media can act as a modulator of indirect influences, which
may change significantly the dynamics of the adoption of
innovations. While this is a source of influence which is not
really amenable to use as an intervention, other approaches
may lead to specific actions in order to increase, e.g., the
adoption of socially desirable behaviors. Akin to behavioral
interventions in which people are informed of the expectations
of others on their behavior (57), we could think of campaigns
in which subjects of interest receive information on what
other, socially distant, people do in the relevant context.
Our experimental results indicate that giving only a limited
amount of information about second- or third-order contacts
could already lead to highly increased rates of behavior
adoption.

a) b)a) b)a) b)

Fig. 7. Comparison between different laws for indirect peer pressure, averaging
over 1000 initial conditions. Blue line represents the only direct pressure diffusion.
Dark green line corresponds to considering also indirect pressure from next nearest
neighbors, while pink line considers pressure from all neighbors at distance less or
equal than 3. Light green line corresponds to the law cd = 4−d

3 commented in
section 2.A. Yellow and brown lines represent two laws that accelerate the spreading
of the innovation, using the laws cd = 5−d

4 and cd = 2
1+d , respectively.

In closing, the results found in this work clearly point
out to the fact that when adopting an innovation we are
not only influenced by peers directly connected to us in our
social networks, but that we are also significantly influenced
by people socially close but not directly connected to us in
any of our social networks. This work paves the way to the
development of further experimental and theoretical setting
which will allow us a better understanding of the dynamics
underneath the diffusion of innovations.

Materials and Methods

A. Experimental methods. The experiment consisted of four treat-
ments, which we refer to as “settings” to highlight our interest in
informational settings, to study the influence of peer pressure on
consensus. Here we summarize a few additional details that are
needed to complete the definition of the experimental setup. The
colors in each setting were different to avoid learning biases. The
eight colors were: setting I (blue and yellow); setting II (magenta
and green); setting III (orange and red); setting IV (purple and
lilac). The first color of each pair being the minority. In case one
or more subjects did not make a choice in a given round or were
missing, we declared them “inactive”. Then, to avoid any change in
the structure of the underlying network, we replace that player(s)
with a “bot”, which is programmed to have 50% probability of
choosing color at random and 50% of following the majority of
the color they would see. Nonetheless, bots were clearly marked
as inactive subjects and were not shown to active participants if
possible. The original network from the study (40) was slightly
modified so that every node had at least two nodes at distance one
and two nodes at distance four. This was done by removing just
one edge and adding another one (edge removed from node 10 to
node 30 and added edge between nodes 2 and 17 from the Pajek
dataset Galesburg drug study 2, friendship network (58)).

Participants received points that, at the end, were converted
into money. Each participant received 1 point per active round
(if they made a decision before the timeout occurred). Then, if
consensus was achieved, all of them received 5 points per each
round left until round 15 (maximum possible number of rounds) if
they were active at least in one of the two last played rounds of
that setting.
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These experiments were programmed using the Python package
oTree (59) version 5.10.3, using Cytoscape.js (60) version 3.1.0 for
graph visualization. The code is available in (61). Data results
are available in (62). Snapshots of the webpages presented to the
participants are shown in the Supplementary Information.

B. Fitting method. For a given experiment and a specific setting,
we obtain the vector uexp with the percentages of adopters in
each round, as well as the initial condition vector u0. Then, for
each triplet of parameters (cd, △, T ), we produce a prediction
vector upred based on our model using the following method.
From the interval [0, 1], discretized in intervals of size 0.01, we
choose cd and calculate the solution of the dynamical system,
obtaining the solution u (t) = [exp (−t (L1 + cdLd))] u0. Now,
we fix a value for T taken between 10 and 1000 in steps of
size 10, and we identify each round i of the experiment with
time ti ∈ [0, T ] such that these times are equally distributed
throughout the interval. Finally, we use one of the threshold values
△ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99} and calculate each entry of the
vector upred by summing all the entries of u(ti) above the threshold
(upred(i) = sum(u(ti) > △). Hence, for each combination of
(cd, △, T ), we obtained the prediction upred, which we can compare
to the real proportion of adopters during the experiments (uexp)
by calculating the mean square error (MSE) and the Pearson
correlation coefficient between the two vectors. The best fit is the
combination of parameters that minimize MSE.

C. Random Forests and feature importance analysis. Random
Forests (RF) (63) are one of the most effective algorithms,
excelling in predictive performance in various application domains,
while demonstrating robustness against overfitting and internal
correlations among explanatory variables. Random Forests employ
decision trees with a unique ensemble technique called bootstrap
aggregation (bagging). Unlike traditional decision trees, RF
combines the results of multiple weak learners using bagging,
which aggregates results through averaging in regression tasks
and a voting system in classification tasks. One notable feature of
RF is its utilization of ”Out-Of-Bag” (OOB) data, which comprises
approximately one-third of the original dataset that is not used
in constructing each tree. OOB data serve as a test data set to
estimate misclassification error and can also be used to analyze the
relative importance of each feature in the classification problem.
For every tree in the forest, the jth feature of the OOB sample is
randomly permuted, and the resulting increase in OOB error is
computed. This increase serves as a measure of the importance of
the jth feature for correct classification: the greater the increase in
OOB error, the more critical the variable is for achieving accurate
classification. This analysis provides valuable insights into the
contribution of each variable to the classification process, helping
in feature selection and interpretation. To estimate the accuracy
of the classifier, we used nested cross-validation (NCV) (64). NCV
operates by employing cross-validation (CV) within two sequential
loops: an inner loop for hyperparameter selection and an outer
loop for computing test error. In our experiments, both the inner
and the outer loops utilized five-fold CV.

D. Analysis of outliers and stubborn individuals. It is evident that,
during the realization of experiments, several uncontrollable factors
may produce outliers which deviate from the statistical behavior
of the majority. In order to detect such individuals, we tested
the results against three different methods for outlier detection:
Z-score, Tukey method, and mean regression (MR). The first two

methods are well documented in the literature (65, 66), so we need
to explain the last method. MR consist in measuring how much
the mean changes when we remove the current value. High scores
corresponds to values that change notoriously the mean and can
be considered an outlier.

In Table 1 we give the number of experiments that the
corresponding method detected as an outlier. In parentheses,
we give the number of stubborn individuals that were present in
such experiments. Then, in setting II all outliers identified by
Tukey method coincide with those in which there is at least one
stubborn individual. In setting III, Tukey and MR identify six
outlier sessions all of which have stubborn participants (6 out of
8 in this setting). Finally, the eight stubborn participants that

appear in setting IV are present in the experiments identified by
MR as the outlier sessions. Therefore, the statistics of the results
clearly point out the identification of those experiments in which
there are stubborn participants as outliers, which is what it should
be expected by considering that the assumption of the diffusion
model is the whole predisposition of agents to reach the consensus
state.

Once we have identified the statistical outliers in the experi-
ments, we proceed to recalculate the models after their removal.
The new coefficients are: c2 = 0.707 ± 0.319; c3 = 0.431 ± 0.453;
c4 = 0.503 ± 0.411. We also recalculate the P -values for the three
pairs of coefficients and obtain: P (c2, c3) = 0.0275, P (c2, c4) =
0.0798, P (c3, c4) = 0.589, which indicates that the means of c3
and c4 are less different than before and, although P (c2, c4) is
significantly smaller than without eliminating outliers, it still is
not significant at 95% of confidence. The empirical model without
the statistical outliers (excluding those detected by MR) is then:

u̇ (t) ≈ − (L1 + (0.707 ± 0.319) L2 + (0.431 ± 0.453) L3) u (t) ;

u(0) =u0. [7]
which increases slightly the strength of the influence of the second
and third circle of influence in relation to the case where the
outliers were not removed. All in all, the results indicate that the
statistical outliers do not significantly affect the general findings
that long-range influences play a fundamental role in the diffusion
of innovations across a network of social interactions. Guided
by the fact that most of the outliers are those having stubborn
individuals, we conducted a final calibration of the model by
removing all experiments in which there was at least one of these
individuals. The results are very similar to those obtained when
removing the outliers detected by MR and are not reproduced
here.

Data Availability Statement. The data obtained from the experiment
sessions is available at (62). The codes used for obtaining the
results presented in this article are available at (61).
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II 5 (1); 9 (1) 2 (1); 5 (1); 9 (1); 16 (2); 20 (1) 2 (1); 5 (1); 9 (1); 16 (2); 20 (1)
III 7 (1) 1 (3); 2 (1); 5 (3); 7 (1) 1 (3); 2 (1); 5 (3); 7 (1)
IV none none 3 (1); 6 (1); 9 (0); 16 (2); 20 (3)

Table 1. Table showing the outlier rounds detected by the different methods. The numbers in parentheses represent the number of stubborn
subjects for that session and Setting.
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