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Cooperative behaviour lies at the very basis of human societies, yet its

evolutionary origin remains a key unsolved puzzle. Whereas reciprocity or

conditional cooperation is one of the most prominent mechanisms proposed

to explain the emergence of cooperation in social dilemmas, recent experimen-

tal findings on networked Prisoner’s Dilemma games suggest that conditional

cooperation also depends on the previous action of the player—namely on the

‘mood’ in which the player is currently in. Roughly, a majority of people

behave as conditional cooperators if they cooperated in the past, whereas

they ignore the context and free ride with high probability if they did not.

However, the ultimate origin of this behaviour represents a conundrum

itself. Here, we aim specifically to provide an evolutionary explanation of

moody conditional cooperation (MCC). To this end, we perform an extensive

analysis of different evolutionary dynamics for players’ behavioural traits—

ranging from standard processes used in game theory based on pay-off

comparison to others that include non-economic or social factors. Our results

show that only a dynamic built upon reinforcement learning is able to give

rise to evolutionarily stable MCC, and at the end to reproduce the human

behaviours observed in the experiments.
1. Introduction
Cooperation and defection are at the heart of every social dilemma [1]. While

cooperative individuals contribute to the collective welfare at a personal cost, defec-

tors choose not to. Owing to the lower individual fitness of cooperators arising

from that cost of contribution, selection pressure acts in favour of defectors, thus

making the emergence of cooperation a difficult puzzle. Evolutionary game

theory [2] provides an appropriate theoretical framework to address the issue of

cooperation among selfish and unrelated individuals. At the most elementary

level, many social dilemmas can be formalized as two-person games where each

player can either cooperate (C) or defect (D). The Prisoner’s Dilemma (PD) game

[3] has been widely used to model a situation in which mutual cooperation leads

to the best outcome in social terms, but defectors can benefit the most individually.

In mathematical terms, this is described by a pay-off matrix (entries correspond to

the row player’s pay-offs)

C D

C R S
D T P

where mutual cooperation yields the reward R, mutual defection leads to

punishment P, and the mixed choice gives the cooperator the sucker’s pay-off

S and the defector the temptation T. The essence of the dilemma is captured by

T . R . P . S: both players prefer any outcome in which the opponent cooperates,

but the best option for both is to defect. In particular, the temptation to cheat (T . R)

and the fear of being cheated (S , P) can put cooperation at risk, and according to the

principles of Darwinian selection, cooperation extinction is inevitable [4].
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Despite the conclusion above, cooperation is indeed

observed in biological and social systems alike [5]. The evol-

utionary origin of such cooperation hence remains a key

unsolved issue, particularly because the manner in which

individuals adapt their behaviour—which is usually referred

to as evolutionary dynamics or strategy update—is unknown

a priori. Traditionally, most of the theoretical studies in this

field have built on update rules based on pay-off comparison

[6–8].1 While such rules fit in the framework of biological

evolution, where pay-off is understood as fitness or reproduc-

tive success, they are also questionable, especially from an

economic perspective, as it is often the case that individuals

perceive the others’ actions but not how much they benefit

from them. Indeed, experimental observations [11–13]

(with some exceptions [14], but see also the reanalysis of

those data in [15]) point out that human subjects playing

PD or Public Good games do not seem to take pay-offs into

consideration. Instead, they respond to the cooperation that

they observe in a reciprocal manner, being more prone to

contribute the more their partners do.

Reciprocity [16] has been studied in two-player games

through the concept of reactive strategies [17], the most famous

of which is Tit-For-Tat [18] (given by playing what the opponent

played in the previous run). Reactive strategies generalize

this idea by considering that players choose their action with

probabilities that depend on the opponent’s previous action.

A further development was to consider memory-one reactive

strategies [17], in which the probabilities depend on the previous

action of both the focal player and her opponent. In multiplayer

games, conditional cooperation, i.e. the dependence of the

chosen strategy on the amount of cooperation received, had

been reported in related experiments [11] and observed also

for the spatial iterated PD [14] (often along with a large per-

centage of free-riders). The analysis of the two largest scale

experiments to date with humans playing an iterated multi-

player PD game on a network [12,13] extended this idea by

including the dependence on the focal player’s previous action,

giving rise to the so-called moody conditional cooperation (MCC).

The MCC strategy can be described as follows [19]: if in

the previous round the player defected, she will cooperate

with probability pD ¼ q (approximately independently of the

observed cooperation), whereas, if she cooperated, she will

cooperate again with a probability pC(x) ¼ px þ r (subject to

the constraint pC(x) � 1), where x is the fraction of cooperative

neighbours in the previous round. There is ample evidence sup-

porting this aggregate behaviour, as it has been observed in at

least five independent experiments: the two already quoted

[12,13]; another one on multiplayer PD [20]; a lab-in-the-field

experiment with people attending a fair in Barcelona, where

participants in the age range 17–87 behaved consistently

according to the MCC strategy [21], and finally, in [14], as

revealed by a recent meta-analysis of those experimental results

[15]. On the other hand, it could be argued that MCC behaviour

arises from learning processes experienced by the players.

In this respect, it is true that when a number of iterations of

the PD is regarded as a single ‘supergame’, repetitions of

such supergame show changes in behaviour [22]. This is in

agreement with the observations in [12], where two repetitions

of the supergame were carried out with the same players

(Experiments 1 and 2 in the reference), and it was found that

the initial behaviour was indeed different in both. However,

analysis that exclude the first few rounds of those experiments

shows clear evidence for MCC behaviour which, if anything,
becomes even more marked in the second one. Similar analysis

were carried out in all other experiments, precisely to check for

the effects of learning, finding in all cases strong evidence in

support of the MCC strategy, even in [20], where 100 iterations

of the PD were played. Therefore, we are confident that the

observation of MCC behaviour is reproducible and correctly

interpreted, and we believe it is a good framework to study

the problem as we propose here. However, from the viewpoint

of ultimate origins and evolutionary stability of this kind of be-

haviour, conditional cooperation and its moody version are a

puzzle themselves. For instance, theoretical results based on

replicator dynamics show that the coexistence of moody con-

ditional cooperators with free-riders is not possible beyond

very small groups [19]. Additionally, whereas the strategies

reported in [12,13] are aggregate behaviours, it is not clear

how individual MCC behavioural profiles fq, p, rg evolve in

time and how many evolutionarily stable profiles can exist

among the players.

Here, we aim precisely to address these issues by develop-

ing and studying a model for the evolutionary dynamics of

MCC behavioural traits. To this end, we perform agent-based

simulations of a population consisting of N differently parame-

trized moody conditional cooperators, either on a well-mixed

population or placed on the nodes of a network, who play an

iterated PD game with their neighbours (which is the same

setting used in recent experiments [12–14]) and whose behav-

ioural parameters fq, p, rg are subject to a strategy update

process. Specifically, during each round t of the game, each

player selects which action to take (C or D) according to her

MCC traits, then plays a PD game with their neighbours—

the chosen action being the same with all of them—and collects

the resulting pay-off pt. Subsequently, for every t rounds,

players may update their MCC parameters according to a

given evolutionary rule.

The key and novel point in this study is that we explore a

large set of possible update rules for the MCC parameters,

whose details are given in the electronic supplementary

material, Material and methods. To begin with, the first set of

rules that we consider are of imitative nature, in which players

simply copy the parameters from a selected counterpart.

Imitation has been related to bounded rationality or to a lack

of information that forces players to copy the strategies of

others [23]. The rules that we consider here cover different

aspects of imitation. Thus, we study the classical imitative

dynamics that are based on pay-off comparison: stochastic

rules as Proportional Imitation [24] (equivalent, for a large and

well-mixed population, to the replicator dynamics [6]), the

Fermi rule [25] (featuring a parameter b that controls the inten-

sity of selection, and that can be understood as the inverse of

temperature or noise in the update rule [26,27]) and the

Death–Birth rule (inspired on Moran dynamics [28]), as well

as the deterministic dynamics given by Unconditional Imitation
(also called ‘Imitate the Best’) [29]. In all these cases, players

decide to copy one of their neighbours with a probability

(that may be 1, i.e. with certainty) that depends in a specific

manner on the pay-offs that they and their partners obtained

in the previous round of the game. To widen the scope of

our analysis, we also analyse another imitative mechanism

that is not based on pay-off comparison, namely the Voter
model [30], in which players simply follow the social context

without any strategic consideration [31]. Finally, in order to

go beyond pure imitation, we also consider another two evol-

utionary dynamics which are innovative, meaning that they
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allow extinct strategies to be reintroduced in the population

(whereas imitative dynamics cannot do that). The first one is

Best Response [26,32], a rule that has received a lot of attention

in the literature, especially in economics, and that represents

a situation in which each player has enough cognitive abilities

to compute an optimum strategy given what her neighbours

did in the previous round. The second one is Reinforcement
Learning [33–35], which instead embodies the condition of a

player that uses her experience to choose or avoid certain

actions based on their consequences: actions that met or

exceeded aspirations in the past tend to be repeated in the

future, whereas choices that led to unsatisfactory experiences

are avoided. Note that neither of these two last rules relies on

the use of information on others’ pay-offs.

With the different update schemes that we have summar-

ized above, we have an ample spectrum of update rules

representing most of the alternatives that have been proposed

to implement evolutionary dynamics. The point of considering

such a comprehensive set is directly related to our aim: finding

how evolution, in a broad sense, can give rise to situations that

are compatible with those seen in the experiments [12,13], in

terms of values and stationarity of the MCC parameters, as

well as of the final level of cooperation achieved. Additionally,

we study different spatial structures determining the inter-

actions among the players: the simple set-up of a well-mixed

population (modelled by a random graph of average degree
�k ¼ m rewired after each round of the game), as well as more

complex structures—such as Barabási–Albert scale-free net-

work [36] (with degree distribution P(k) � k23 and k̄ ¼ m)

and regular lattices with periodic boundary conditions

(where each node is connected to its k ; m nearest neighbours)

as used in the available experimental results. In doing so,

we add another goal to our research, namely to check whether

evolution can also explain the observed lack of network recipro-
city [37], which is another important experimental outcome

[12,13]. Indeed, experimental results show very clearly that,

when it comes to human behaviour, the existence of an under-

lying network of contacts does not have any influence on the

final level of cooperation. Therefore, any evolutionary proposal

to explain the way subjects behave in the experiments must also

be consistent with this additional observation.
2. Results and discussion
We have carried out an extensive simulation program on the set

of update rules and underlying networks that we have intro-

duced above. In what follows, we separate the discussion of

the corresponding results into two main groups: imitative

and non-imitative strategies. Additional aspects of our numeri-

cal approach are described in the electronic supplementary

material, Results.

2.1. Imitative updates
The five topmost sets of plots of figure 1 show the evolution of

the level of cooperation c (defined as the percentage of players

who cooperate in each round of the game), as well as the

stationary probability distribution of the individual MCC par-

ameters among the population, when different evolutionary

dynamics are employed to update players’ behavioural traits.

Note that all the plots refer to the case t ¼ 1 (meaning that

the update takes place after each round). We will show only

results for this choice below, because we have observed that
the value of t basically influences only the convergence rate

of the system to its stationary state, but not its characteristic

features. As can be seen from the plots, the final level of

cooperation here is, generally, highly dependent on the popu-

lation structure, and often the final outcome is a fully defective

state (especially for a well-mixed population).2 Then, as

expected from non-innovative strategies, the number of pro-

files fq, p, rg that survive at the end of the evolution is

always very low and, in general, only one profile is left for

every individual realization of the system. Notwithstanding,

the surviving profiles are very different among independent

realizations (except when the final outcome is full defection,

where q! 0 irrespectively of p and r), indicating the absence

of a stationary distribution for MCC parameters, i.e. the lack

of evolutionarily stable profiles. The only case in which the

parameters q and r tend to concentrate around some station-

ary non-trivial values is given by games played on lattices

and with unconditional imitation updating. Finally, we note

that, when the update rule is the voter model, the surviving

profile is just picked randomly among the population (as

expected from a rule that is not meant to improve pay-offs),

and hence the cooperation level remains close on average to

the value set by the initial distribution of MCC parameters.

A similar behaviour is observed with the Fermi rule for low

b, where b is the parameter that controls the intensity of

the selection. Whereas for high b (low temperature), errors

are unlikely to occur and players always choose the parameters

that enhance their pay-offs, resulting in full defection as final

outcome, for low b (high temperature) errors are frequent, so

that MCC parameters basically change randomly and c
remains close to its initial value. It is also worth noting that pro-

portional imitation and the Fermi rule lead to very similar

results, except for the parameter q, which makes sense in the

view that they are very similar unless b is very small. The

fact that both the Fermi rule and the death–birth update lead

also to similar outcomes is probably related to those two

dynamics being both error-prone, with specific features of

either one showing, for instance, in the different results on lat-

tices. Nonetheless, beyond all these peculiarities of each

imitative dynamics, the main conclusion of our simulation pro-

gram is that this type of update scheme is not compatible with

the experimental observations.

Note that it is not our goal to explain in detail the effects of a

particular updating rule on a given population structure. How-

ever, it is possible to gain qualitative insights into the behaviour

of the system from rather naive considerations. Take for instance,

scale-free networks, which feature hubs (players with high

degree) that thus get higher pay-offs than average players do.

If the dynamics is of imitative nature, hubs’ strategy is stable

and tends to spread over the network: there is the possibility

for a stable subset of cooperators to form around hubs [38].

This behaviour (which cannot occur in random or regular

graphs, where the degree distribution is more homogeneous)

is clearly visible when the updating rule is proportional imita-

tion. Notably, the stability of the subset of cooperators is

destroyed when mistakes are possible (as with the Fermi rule);

on the other hand, it is enhanced when the updating selects

preferentially individuals with high pay-offs (as with the

death–birth rule or unconditional imitation). In these two

latter cases, cooperation becomes sustainable also in lattices, as

these structures naturally allow clusters of mutually connected

cooperators to emerge. Instead, the independence on the net-

work observed—as we shall see—in the case of reinforcement
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learning is easily explained by players not even looking at each

other, which makes the actual population structure irrelevant.
2.2. Non-imitative updates
A first general finding about this type of evolutionary rule is

that, because of their own nature, they allow for a very large

number of surviving MCC profiles (�N), even when the par-

ameters tend to concentrate around specific values. The

bottom set of plots of figure 1 summarizes our results for
the best response dynamics, which is the most ‘rational’ of the

ones that we are studying here. For this choice, the system

always ends up in a fully defective state, irrespectively of the net-

work’s structure, which is the outcome that would be obtained

by global maximization of the individual pay-offs. In this

sense, the amount d by which parameters are shifted at each

update influences only the convergence rate of the system:

higher d arrives faster to full defection (q ¼ r ¼ 0). We then see

that evolution by best response fails completely to explain any

of the main experimental results.
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Our other rule of choice in this type is reinforcement learn-

ing. We will begin by assuming that aspiration levels A remain

fixed in time. Our results regarding this rule are presented in

figure 2. When A is midway between the punishment and

reward pay-offs (P , A , R), we observe a stationary, non-

vanishing level of cooperation around 30% that does not

depend on the population structure. This behaviour, that is

robust with respect to the learning rate l, is in good qualitative

agreement with the experimental observations [12,13]. How-

ever, the most remarkable outcome of this dynamic is that,

contrary to all other update procedures that we have discussed

so far, the values of the MCC parameters fq, p, rg concentrate

around some stationary, non-trivial values which are indepen-

dent of the population structure and of the initial conditions of

the system. Indeed, we have checked that the stationary values

of fq, p, rg do not depend on the initial form of their distri-

butions, and also that fixing one of these three parameters

does not influence the stationary distributions of the others.

More importantly, these values are compatible with the ones

obtained by linear fits of the aggregate MCC behaviour

extracted from the experiments [12,13]. Reinforcement learning

thus represents the only mechanism (among those considered

here) which is able to give rise to evolutionarily stable moody

conditional cooperators, while at the same time reproducing

the cooperation level and the lack of network reciprocity

(note that, as we already said, the type of network on which
the population sits does not affect the cooperation level). It is

worth mentioning two other features of this dynamics. First,

we have checked that the value of l influences only the conver-

gence rate of the system; however, if players learn too rapidly

(l � 1) then the parameters change too quickly and too much

to reach stationary values—a phenomenon typical of this

kind of learning algorithms. Second, if we introduce in the

system a fraction d of players who always defect (recall that

full defectors coexist with moody conditional cooperators

in the experiments), what happens is that the final coopera-

tion level changes—it drops to 25% for d ¼ 0.2 and to 20%

for d ¼ 0.4—but the stationary distributions of MCC par-

ameters are not affected. This means that reinforcement

learning is able to account for the heterogeneity of the beha-

viours observed in the experimental populations, which is

consistent with the fact that this update rule does not take

into account either the pay-offs or the actions of the rest of

the players.

Further evidence for the robustness of the reinforcement

learning evolutionary dynamics arises from extending our

study to other aspiration levels, including dynamic ones. In

general, what we observe is that the higher A, the higher the

final level of cooperation achieved. When R , A , T, players

are not satisfied with the reward of mutual cooperation; how-

ever, an outcome of mutual defection leads to a great stimulus

towards cooperation in the next round. This is why players’
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parameters tend to concentrate around values that allow for a

strategy which alternates cooperation and defection, and that

brings to stationary cooperation levels around 50%. Instead,

if S , A , P, then defection–defection is a satisfactory out-

come for each pair of players. In this case, cooperation may

thrive only on stationary networks (where clusters of coopera-

tor may form). However, for a well-mixed population, the final

state is necessarily fully defective (q! 0). Hence, we observe

in this case, a dependence on the network structure which

is not observed in the experiments; nonetheless, setting an

aspiration level below punishment is at least questionable.

Therefore, unless players make very strange decisions on their

expectations from the game, we find behaviours that agree

qualitatively with the experiments. Finally, we consider the

case in which players adapt their aspiration level after each

round: Atþ1  ð1� hÞAt þ hp t/k, where h is the adaptation

(or habituation) rate and P , A0 , R. What we observe now is

that the stationary level of cooperation lies around 20%, the

absence of network reciprocity is recovered and players’ average

aspiration levels remain in the range P , �A , R. Thus, this case

is again compatible with experimental observations, and the fact

that aspiration levels of an intermediate character are selected

(corresponding to the case that better describes them) provides

a clear rationale for this choice in the preceding paragraph.

A final important validation of reinforcement learning

comes from studying the experience-weighted attraction

(EWA) updating [39], an evolutionary dynamics that combines

aspects of belief learning models (to which best response

belongs) and of reinforcement learning. Results for this choice

of the updating scheme (which are reported in the electronic

supplementary material, EWA) confirm in fact that reinforce-

ment learning is the determinant contribution which achieves

situations matching with empirical outcomes.
3. Conclusion
Understanding cooperation is crucial because all major tran-

sitions in evolution involve the spreading of some sort of

cooperative behaviour [5]. In addition, the archetypical tensions

that generate social dilemmas are present in fundamental

problems of the modern world: resource depletion, pollution,

overpopulation and climate change. This work, inspired by

experiments [12,13], with the aim of finding an evolutionary

framework capable of modelling and justifying real people be-

haviour in an important class of social dilemmas—namely PD

games. To this end, we have studied the evolution of a popu-

lation of differently parametrized MCC whose parameters

can evolve. We have considered several rules for parameters’

changes—both of imitative nature and innovative mechanisms,

as well as rules based on pay-off comparison and others based

on non-economic or social factors. Our research shows that

reinforcement learning with a wide range of learning rates

is the only mechanism able to explain the evolutionary stabi-

lity of MCC, leading to situations that are in agreement

with the experimental observations in terms of the stationary

level of cooperation achieved, average values and stationary

distributions of the MCC parameters and absence of net-

work reciprocity. Note that we have considered only PD

games; however, given that in our set-up, players have to

play the same action with all their neighbours, it is clear that

our results should be related to Public Goods experiments

(where conditional cooperation was first observed [11]). Our
findings thus suggest that MCC can also arise and be explained

through reinforcement learning dynamics in repeated Public

Goods games.

We stress that this is a very relevant result, as for the first

time to our knowledge we are providing a self-consistent

picture of how people behave in PD games on networks.

Indeed, starting from the observation that players do not

take others’ pay-offs into account, we find that if this behav-

iour is to be explained in an evolutionary manner, it has to be

because people learn from what they experience, and not

from the information they may gather on their neighbours.

Such a learning process is in turn very sensible in the heavily

social framework in which we as humans are embedded and

compatible with the knowledge that we have on the effects of

our choices on others. On the other hand, the evolutionary

dynamics that our work eliminates as possibly responsible

for how we behave are, in fact, difficult to justify in the

same social context, either because they would require a

larger cognitive effort (best response) or, on the contrary,

because they assume a very limited rationality that only

allows imitation without reflecting on how we have been

affected by our choices. Our work thus provides independent

evidence that, at least in the context of human subjects inter-

acting in PD, the observed behaviours arise mostly from

learning. Of course, this does not mean that other ways to

update one’s strategy are not possible: indeed, a large fraction

of people have been observed to be full defectors, a choice

they may have arrived at by considering the PD game from

a purely rational viewpoint. In addition, specific individuals

may behave in idiosyncratic ways that are not described

within our framework here. Still, as we have seen, our main

result, namely that reinforcement learning explains the be-

haviour of a majority of people and its macro-consequences

(level of cooperation, lack of network reciprocity) would

still hold true in the presence of these other people.

Although a generalization of our results to other classes of

social dilemma beyond PD and Public Goods is not straightfor-

ward, our conclusions here should guide further research on

games on networks. We believe that the experimental results,

to which this work provides a firm theoretical support, allow

the conclusion that many of the evolutionary dynamics used

in theory and in simulations simply do not apply to the behav-

iour of human subjects and, therefore, their use should be

avoided. As a matter of fact, much of the research published

in the last decade by using all these update schemes is only

adding confusion to an already very complicated problem.

Even so, our findings do not exclude the plausibility of other

strategy updating in different contexts. For instance, analytical

results with imitative dynamics [40] display an agreement with

experimental outcomes on dynamical networks [41], where it

was also shown that selection intensity (which can be thought

as a measure of players’ rationality) can dramatically alter the

evolutionary outcome [42]. It is also important to stress that

our findings here relate to human behaviour, and other species

could behave differently; for instance, it has been recently

reported that bacteria improve their cooperation on a spatial

structure [43] and this could arise because of more imitative

‘strategies’. Finally, a promising line of research could be to

compare the distribution of values for the MCC parameters

that we have obtained here with the observations on single

individuals, thus going beyond the check against aggregate

data to address the issue of reproducing whole histograms.

Unfortunately, the data that we currently have are not good
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in terms of individual behaviour, as observations are noisy and

statistics are insufficient to assign significant values of the par-

ameters to single participants. In this respect, experiments

specifically designed to overcome this difficulty could be a

very relevant contribution to further verifying our claims.

Another important suggestion arising from our research is

the relevance of theoretical concepts derived within reinforce-

ment learning to the study of games on networks. In this

respect, it is very interesting to recall that a theoretical line of

work based on reinforcement learning models for two-player

repeated games has received quite some attention recently

[44,45]. In this context, a generalized equilibrium concept has

been introduced in order to explain the findings in simulations

of two-player PD [34,35], called self-correcting equilibrium: it

obtains when the expected change of parameters is zero but

there is a positive probability to incur into a negative as well

as positive stimulus. The extension of the reinforcement learning

dynamics to multiplayer PD that we have presented here points

to the explanatory power of such equilibrium concepts in the

framework of network games, as the level of cooperation

observed in experiments is in close agreement with the pre-

dicted equilibrium. Importantly, it has recently been shown

that behavioural rules with intermediate aspiration levels, as

the ones we find here to be relevant, are the most successful

ones among all possible reactive strategies in a wide range of

two-player games [46]. This suggests that this type of evolution-

ary dynamics may indeed be relevant in general. It would

therefore be important to study whether or not the associated

equilibrium concept is also the most important one when

other types of games are played on an underlying network.

If that is the case, we would have a very powerful tool to

understand and predict human behaviour in those situations.
4. Material and methods
Agent-based simulations of the model were carried out using the

following parameters: c0 ¼ 0.5 (initial fraction of cooperators),3

R ¼ 1, P ¼ 0, S ¼ 21/2, T ¼ 3/2 (entries of the PD’s pay-off

matrix, such that T . R, S , P and 2R . T þ S),4 N ¼ 1000

and m ¼ 10 (network parameters).5 The MCC behavioural

parameters fq, p, rg are all drawn for each player before the

first round of the game from a uniform distribution U½0,1�,
with the additional constraint p þ r � 1 to have 0 � pC(x) � 1.

Note that the particular form of the initial distribution as

well as the presence of the constraint does not influence the

outcome of our experiments.
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Endnotes
1There are indeed more sophisticated approaches, e.g. modelling
strategies as evolving automata or bitstrings that can cover a large
strategy space [9,10].
2Note that the general MCC behaviour includes full defectors
and full cooperators as special cases: if for a given player q ¼ 0,
then as soon as she defects she will keep defecting until q changes;
vice versa, if r ¼ 1, then as soon as she cooperates she will keep
cooperating until r changes.
3This value is close to the initial level of cooperation observed in the
experiments [12,13] and otherwise represents our ignorance about
the initial mood of the players.
4These values are also close to the ones set in the experiments [12,13].
5We checked that our results are robust with respect to system size
and link density.
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