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Suppression of localization in Kronig-Penney models with correlated disorder
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We consider the electron dynamics and transport properties of one-dimensional continuous models
with random, short-range correlated impurities. We develop a generalized Poincare map formalism
to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its
application by means of a specific example. We then concentrate on the case of a Kronig-Penney
model with dimer impurities. The previous technique allows us to show that this model presents
infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a
band of extended states, in contradiction with the general viewpoint that all one-dimensional models
with random potentials support only localized states. We report on exact transfer-matrix numerical
calculations of the transmission coefFicient, density of states, and localization length for various
strengths of disorder. The most important conclusion so obtained is that this kind of system has a
very large number of extended states. Multifractal analysis of very long systems clearly demonstrates
the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the
relevance of these results in several physical contexts.

I. INTRODUCTION

The role of disorder in physics has been always re-
garded as mostly destructive. Indeed, since its early de-
velopment by the late fifties, a milestone in the theory
of disordered systems has been the discovery and under-
standing of localization phenomena. i As a consequence of
the breaking of translation symmetry and the subsequent
failure of the basic hypothesis of the Bloch theorem, An-
derson showed that tight-binding models with indepen-
dent random interactions exhibit a finite electronic local-
ization length (outside which the probability of finding
the electron is negligible). Correspondingly, the electron
diffusion coefficient vanishes. In the one-dimensional case
it was shown that this happens even for an infinitesi-
mal amount of disorder. It is worth mentioning that
localization by disorder was also found in vibrations of
glasslike disordered chains around the same time;2 it was
claimed that unless the chain is ordered or io = 0 (long-
wavelength limit), all vibrational modes are localized in
one dimension. These, as well as similar results in re-
lated models, led to the prevalent view that disorder in-
duces the localization of all eigenstates by disorder in
one-dimensional systems; although not proved in gen-
eral, this assertion has nowadays acquired consideration
as a theorem.

However, in the last few years many researchers have
started to realize that disorder efFects can also be of a
creative nature, playing an active part in the produc-
tion of complex phenomena. This way of thinking has
stimulated a rapidly increasing amount of work in which
diferent manifestations of these unexpected features of
disordered systems have been pointed out. One of the

main lines of this investigation is the search for scenarios
where localization is inhibited or suppressed, allowing for
materials with good transport properties. Two main fac-
tors have been proposed to counteract localization phe-
nomena: correlations and nonlinearity. In this paper we
will be mainly concerned with the former property, but
we will mention that the latter has been shown to im-
prove transport, 5 and now it is beginning to be generally
accepted that nonlinear excitations can be robust enough
to propagate in the presence of disorder.

A number of recent works dealing with tight-binding
Hamiltonians strongly suggest that the occurrence of
disorder correlations —neighbor random parameters are
not independent within a correlation length —introduces
a short-range order leading to new phenomena in ran-
dom systems: The competition between the long-range
disorder and the short-range correlation causes the ap-
pearance of delocalization and long-range transport. Re-
cently, Dunlap, Wu, and Phillipsr s (see Ref. 10 for a
review) studied a tight-binding model [the so-called ran-
dom dimer model (RDM)j in which the on-site energy
takes on one of two possible values, one of which was
assigned at random to pairs of lattice sites, so the cor-
relation length coincides with the lattice spacing. They
showed that for a certain energy the reflection coefficient
of a single dimer vanished, and that this resonance was
preserved when a finite concentration of dimers were ran-
domly placed in the chain. This gave rise to a set of delo-
calized states whose number was found to be proportional
to the square root of the number of sites. As a conse-
quence, in such a system electronic transport can take
place almost ballistically. Similar results have been also
shown to hold true for dilute binary alloys by Flores.
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The conclusion of Dunlap and co-workers that a large
number of states were not localized has been further con-
firmed by perturbative calculations by Bovier, although
very recently a contrary viewpoint has been held by Gan-
gopadhyay and Sen. The transmission coefFicient of
nonscattered states of the random dimer model has been
extensively investigated by Datta, Giri, and Kundu:
these authors found that the exact number of nonscat-
tered states depends on both the concentration and the
energy of the dimer. The RDM has been generalized
to include more complex arrangements of symmetrical
defects and other models of paired correlations, with-
out suppressing the existence of many extended states.
In addition, correlated disorder may also lead to delo-
calization of other quasiparticles such magnons and
phonons.

Our aim in this paper is to elucidate whether delo-
calization by correlations is preserved in more realis-
tic models. To this end, we will show numerical evi-
dences that such correlation allows for extended states
in spite of the long-range disorder, concerning ourselves
with the well-known Kronig-Penney model. This model
has been successfully applied in many fields of physics,
such as band structure and electron dynamics in ordered
solids, localization phenomena in disordered solids and
liquids, microelectronic devices, ' physical proper-
ties of layered superconductors, and quark tunneling
in one-dimensional nuclear models. In the same way
as in the Anderson model, wave functions in Kronig-
Penney models with independent random potentials (one-
dimensional array of b'-function potentials with indepen-
dent random interatomic spacings and/or strengths) are
strongly localized in well-defined regions of the lattice.
Therefore, and in view of the above-mentioned works on
tight-binding models with correlated disorder, it is nat-
ural to ask whether random Kronig-Penney models with
paired correlated b-function strengths also present delo-
calized electronic states. We believe that this is a highly
nontrivial question because the Kronig-Penney model is
a continuous, many-band model, whereas the random
dimer model is a discrete, one-band model and there is
no a direct relation between them; besides, scattering is
quite a bit more complex in this continuous model than
in tight-binding approaches. It is for all these reasons
that we claim our model is more realistic than the RDM,
since no tight-binding approach is involved. Moreover,
the b-function potential is a good candidate to model
more structured, short-ranged interactions.

In the following, we shall point out that significant dif-
ferences arise between continuous and discrete modeIs.
In fact we will see that there exists an infinite number
of energies for which the refIection coefFicient at a single
dimer vanishes. Another interesting problem we wish to
deal with is to establish precisely the extended charac-
ter of the wave functions. In constrast to other works,
which demonstrate partial delocalization via the presence
of power-law singularities of the localization length or
high transmission coeKcient, we will apply the mul-
ti&actal analysis. This method has been successfully
used in characterizing electronic wave functions in un-
correlated disordered systems (see Ref. 26 and references

therein) and atomic vibrations in correlated disordered
chains. %ith this in mind, the paper is organized as
follows. In Sec. II, we describe our generalization of the
Poincare map technique to any one-dimensional poten-
tial, removing certain restrictions that reduced the ap-
plicability of previous version. We also fully work out,
as a example, a potential V(z) formed by an array of K
square barriers of equal width. The b-function limit is
also considered, as it will be used in a subsequent stage.
Afterward, in Sec. III we turn ourselves to our main topic,
the Kronig-Penney model. We first present the particular
version we deal with. Next, we analyze the transmission
properties as modified by the presence of a single dimer
impurity, finding the key feature that it originates an in-
finite number of resonances. We close Sec. III with our
results for the case when a finite concentration of impuri-
ties is present, deriving exact results for the main charac-
teristics of the model through a transfer-matrix technique
combined with the Poincare map approach. Section IV
contains the outcome of the evaluation of these exact cal-
culations for specific realizations of the model, comment-
ing separately on transmission coefBcient and resistance,
Lyapunov coefFicient, and density of states; we also dis-
cuss average results that confirm our claim that the de-
scribed behavior is typical of any realization of our model.
Multifractal analysis of the wave functions is performed
and discussed in Sec. V, where we show that states close
to, but not exactly at, the resonance exhibit an extended
behavior. Final comments, discussions and applications
to a number of physical contexts are contained in Sec.
VI.

II. GENERALIZED POINCARE MAP

In the body of the paper we will be concerned with
the one-dimensional Schrodinger equation for an array
of 8-function potentials. Although the 8-function poten-
tial is kequently used to simulate more complex poten-
tials, it turns out that there exist limitations to its use
in actual systems. For instance, it is possible to fab-
ricate semiconductor heterostructures with a variety of
potential profiles along the growth direction (square and
parabolic barriers in resonant tunneling devices and saw-
tooth potentials in b-doped layers). Therefore it would
be useful to carry out a mapping of the continuous wave

equation for an arbitrary potential onto a discrete equa-
tion. In particular such a realization could provide a
simple way to study the electron dynamics in actual dis-
ordered systems. We should mention here that some
years ago Kohmoto " found an exact transformation of
the Schrodinger equation with multiple-scattering poten-
tials to a discrete tight-binding equation by means of
scattering theory. This author required the potential to
vanish at certain points of the space and the results were
not applied to any particular potential. In this section
we present an alternative approach without requiring any
constraint on the potential (aside &om those required by

quantum mechanics) and these results will be used to find
the Poincare map associated to the Schrodinger equation
for an array of square barriers. Finally, by taking the
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b-function limit, the reduction to the Poincare map asso-
ciated to the Kronig-Penney model [see Eq. (11) below],
previously proposed by Bellisard et al. and SokoloE and
Jose will be also obtained.

We begin by considering a nonrelativistic electron mov-

ing under the action of a one-dimensional potential V(x).
We define an arbitrary set of points (z ) along the x
axis without restrictions of the potential shape at those
points. We aim to 6nd a recurrence relation of the elec-
tron wave function at three consecutive points of the set
fz„). Let f„(z) and g„(z) be two linearly independent
solutions of the corresponding Schrodinger equation in
the interval [x„ 1,x„].Therefore the wave function and
its derivative are simply written as

g4"(z) )
" ~~„) '

where A„and B are constants, the prime indicates dif-
ferentiation with respect to z, and the Wronskian matrix
is given by

q &.'(z) a(x) ) '

and its determinant is constant. Matching the solution
at x = x„one 6nds that

t' K12(n+ 1) t

@„+,—
~
K»(n+1) + K22(n)

K12 n

K,2(n+ 1)
K12(n)

This is a generalized Poincare map associated to the
Schrodinger equation for the potential V(x). It relates
the electron wave function at three consecutive (but oth-
erwise arbitrary) points. We must stress that this re-

duction is exact and equivalent to the continuous wave

equation but it is more suitable for numerical purposes.
For instance, we can now use the transfer-matrix tech-

nique to study scattering properties. Thus we avoid those
discretization schemes that approximate derivatives by
6nite differences which, of course, are subjected to unde-

sirable truncation errors.
As a working example let us study a potential V(z)

formed by an array of N square barriers of equal width
26. We assume that each barrier is centered at the point
z„(n = 1, . . . , N) and its corresponding height is v„.
Hence

( )
vn, zn —b( z( x+nb,
0 otherwise.

For clarity we de6ne the matrix

eikn e ikn—
M(»z) =

I qi e —2 e

(x„lW (z ) I
g" I

=W +i(z ) I

~"+'
I ~

n, ) n+1 )

and using (1) at z = z„and x = x„+1 we arrive at

4„+,
I

= Wn+1(z +1)W +1(zn. ) ~

n+1 ) (4)

whose columns are nothing but the eigenfunctions of the
free-particle wave equation with energy k and their cor-
responding derivatives. It satis6es the interesting rela-
tion

M(k, z)M (k, z')

(8)
cos k (z —x') (1/k) sin k(z —z') )

I
—k sin k(x —z ) cos k(z —x )

where @„=iII(z„) and @„' = 4'(z„). Defining K(n+
1) = W„+1(x„+1)W„+1(x„),eliminating the deriva-
tives of the wave function, and taking into account that
det K(n + 1) = 1 we finally get

Matching the wave function (plane waves) at the discon-
tinuity points of the potential in the interval [z„ 1, z„)
one can obtain the Wronskian matrix. The result is as
follows:

W„(z) = M(q„„*)M '(q„„*„1+b)M(q, *„ 1+b),
M(q, z),
M(q„, z)M 1(q„,x„—b) M(q, z„—b),

&n —1 +&+&n—1+~ &

z„&+b & z & z„—b,
z„—6&x &z„,

where q = ~E and q = gE —v„. Hence, we have

K(n+1) = M(q„+1,*„+1)M '(q„+i, x„+1 —b)M(q, x„+1 —b)M '(q, z„+b)M(q„, *„+b)M '(q„,x„). (1O)

The matrix products are simplified with the aid of (8). It
is a matter of simple algebra to write explictly the gen-
eralized Poincare map (5) in this case, and we omit the
result for brevity. Finally let us consider the b-function
limit in the case of equally spaced barriers (x„= n).
This limit is accomplished by letting b ~ 0, whereas
A„= 2bv remains finite. Hence, one easily Ands that

K]2(n + 1) = K12(n) and Kii(n + 1) + K22(n)
2 cos q + (A /q) sin q, leading to

@„+j+ 4„q —— 2cosq+ —sinq
q

where now 4 = 4(z = n).
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III. KRONIG-PENNEY MODEL
WITH CORRELATED DISORDER

We now turn to our main goal, the random Kronig-
Penney model, assuming that the electron interaction
with the lattice is given by a potential of the form

the condition 0' = 0, i.e.,

cos q„+ sin q„= 0.
2q7

(16)

Equations (14) and (16) can be easily recast into these
other, more useful two:

(12) tan q„

q„
(17a)

We choose A„) 0 hereafter, and we take the positions
of the h functions to be regularly spaced (z„= n) Th.e
extension of our computations below to the A„( 0 case
is straightforward. We introduce a paired correlated dis-
order, which implies that A„ takes on only two values,
A and A', with the additional constraint that A' appears
only in pairs of neighboring sites (dimer defect). The
corresponding Schrodinger equation is then

d
, + ) A„b(z —n) 4 (z) = E @(z). (13)

A. Scat tering from a single dimer defect

Let us consider a single dimer placed at sites n = 0 and
n = 1 in an otherwise perfect lattice. To proceed, we have
to take into account in the Erst place the condition for
an electron to be able to move in the perfect lattice given
by Eq. (11),namely,

A
cos q + —sin q + 1;

2q
(14)

this constraint gives the allowed energy values once A is
fixed. Now considering Eq. (11) at sites n = —1, 0, 1 and
eliminating @0 and @q one gets

The Poincare map associated with Eq. (13) has been de-
rived in the preceding section. We want to stress once
more that, by doing this reduction to an equivalent dis-
crete set of equations, we are not losing any information
at all, and the calculations remain exact. Notice that the
energy enters in (11) in a rather complicated fashion so
direct tridiagonalization is not possible. However, even
so, the reduction of the Schrodinger equation to a set of
discrete equations is suitable to study the scattering of
one electron at a single dimer defect. This analysis is
required to get a better understanding of the transport
properties of electrons when several of such defects are
randomly placed along the lattice.

(i7b)

Without loss of generality, we rectrict ourselves to the
range 0 & A' & 2A. Thus Eq. (17b) is trivially veri-
Ged, and therefore it poses no constraints on the allowed
energy values, aside from the fact that they must be pos-
itive. Hence, we are left only with Eq. (17a) to select the
energy values for which the reflection coefficient of a sin-
gle dimer becomes exactly zero. As tan q„ is a vr-periodic
function and it takes all values in [

—oo, +oo], for any A'

we may choose we will find energies solving for q„(17a)
in every interval [(2n —1) n/2, (2n+ 1) vr/2], i.e. , we will
have an infinite countable set of energies for which the
single defect reHection coefficient vanishes. This is to be
compared with the result of Dunlap et aL, who found a
unique energy in the allowed band (recall their model is a
single-band one) for which the same perfect transmission
took place in the RDM. We discuss this point further in
our conclusions.

B. Scattering from a lattice
with random dimer defects

We now proceed to the problem of the disordered lat-
tice, containing a certain number of pair defects ran-
domly placed. To this end, we go back to Eq. (13)
and introduce the reflection and transmission amplitudes
through the relationships:

( )
e'&*+r1V e '&*, ifz &1,
t~ e'~, if2;&X,

where t~ and r~ are the transmission and the reflec-
tion amplitudes of a system with N scatterers, respec-
tively. We compute recursively both amplitudes using
well-known transfer-matrix techniques (see, e.g. , Ref. 30).
Ln particular, we find that the transmission amplitude
can be written as

( ~1v,Ar ( p1v l
~1V =1~1V+

/1N —1 E ~1@—1 )
—02 ——(&+0' —0"0)@,—(1 —0")e „ (15) (19)

where we have defined 0 = 2cosq + (A/q) sinq and
0' = 2 cos q + (A'/q) sin q for brevity. Besides a constant
phase factor of vr, Eq. (15) reduces to the equation of mo-
tion in the perfect lattice whenever 0 = 0, in which sites
n = 0 and n = 1 have been eliminated. This means that
the reHection coefFicient at the single dimer vanishes, and
consequently there is a complete transparency. There-
fore, the particular resonant energy E„=q„ is given by

where A1V = 1/t&, and

1 —il —
I

A~
'*'

P~ = —il —1»e " (20)
. 1'1), . (1)

(2q) (2q)

Finally, Eq. (19) must be supplemented by two initial
conditions, Ao ——1 and Aq ——o.q, to determine the am-
plitudes completely.
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Once we have computed the transmission amplitude,
some physically relevant magnitudes can be readily ob-
tained &om it. Thus, the transmission coefficient at a
given energy is written as

(21)

whereas the dimensionless resistance, according to the
Landauer formula, is simply

1
ln ~~.

2N
(23)

The Lyapunov coefficient represents a rate of the growth
of the wave function and it is nothing but the inverse of
the localization length. Delocalization of the electronic
wave function leads to a decrease of this parameter. Also

it can be shown that the integrated density of states
(IDOS) is related to t~ by

1
PN =

N
(22)

Z ~N
ln —,

2xN
(24)

The dependence of the resistance with the system size is
useful to study the spatial extent of the electronic states.
Exponentially localized states leads to a nonohmic be-
havior of the resistance, which increases exponentially
with the system size. On the other hand, extended states
show a nondecreasing transmission coefficient, and con-
sequently the resistance remains bounded as the system
size increases. Aside &om these two quantities, there are
others that can also be obtained &om the transmission
amplitude, although somewhat less naturally. Indeed,
the Lyapunov coefficient is a nonnegative parameter and
depends on this amplitude through the expression

from this last expression, the density of states (DOS)
can be obtained by simple derivation with respect to the
energy.

The results we have obtained so far provide an ex-

act, although nonclosed, analytical description of any
one-dimensional, disordered Kronig-Penney model. With
them, we can compute the magnitudes we mentioned
above for any given model and, in particular, in the case
of correlated disorder. All expressions are very simple
and suitable for an efficient numerical treatment of any
speci6c case. We will now evaluate them for several in-

teresting cases to describe those relevant features of the
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FIG. 1. Transmission coefficient vs energy for a system with A'/A = 1.5. (a) and (b) show the two first resonances for a
system with a defect concentration c = 0.2; (c) and (d), same for c = 0.65.
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transmission coef6cient and related quantities that may
be the fingerprint of extended states.

ri
I I I I ! I i I ! I & I I I I ! I ! i ~ I I I !!I IT~i

==: 10

IV. RESULTS

There are several parameters that can be varied in our
model: the strengths of the two kinds of scatterers, A

and A', the defect concentration e, and the length of the
system, ¹ As to the first two of them, it can be checked
that the factor A can be rescaled and subsequently sup-
pressed in Eq. (13), and therefore, the relevant quantity
is just the ratio A'/A, which allows us to fix A = 1 from
now on. Hereafter we define the defect concentration e
as the ratio between the number of single scatterers with
potential strength A' (twice the number of dimer defects)
and the total number of scatterers in the system. We first
show our results realizationwise because we believe that
these are the most physically relevant. Nevertheless, at
the end of the section we discuss the average properties
of the model, to confirm that the results we report are
obtained for any typical realization.

I j I I ! I I I I I I I ! ! I ! I I
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A. Transmission coefBcient and resistance

Figure 1 shows the results of evaluating the expres-
sion (21) for a system of 10000 scatterers and a ratio
A'/A = 1.5; all other figures correspond to the same
two parameters unless otherwise stated. Figures l(a)
and 1(b) have been obtained for a defect concentration
c = 0.2, whereas Figs. 1(c) and 1(d) are computations for
c = 0.65; in both cases, we show the transmission coeffi-
cient vs energy for intervals near the first two resonances
predicted by Eq. (17a), namely, E„=3.7626 and 23.6715.
In these plots it can be clearly seen that around them
the transmission coeKcient reaches values very close to
1. What is probably most important is the fact, also ap-
preciated in the plots, that states close to the resonant
ones have very good transmission properties, similar to
those of the resonant energy. This happens for an energy
interval that is always greater than zero for all the A'/A,

N, and e values we have studied. The appearance of the
peak does not depend on any parameter aside &om the
order resonance, but it width does depend on the order
of the resonance (the higher the resonance the wider the
band of states with w 1) and the concentration of de-
fects c (the larger c the narrower the peak, although it
never disappears) .

In Fig. 2 we show for comparison the resistance of a
dimer system and a random system with the same con-
centration of defects. The behavior of both systems is
completely different: The lower curve, which corresponds
to the dimer model, exhibits a minimum resistance about
ten orders of magnitude below the resistance of the un-
correlated model (upper curve). Even more, all of the
dimer curve is below the usual random behavior, except
quite far &om the resonance. %'e believe this plot is a
strong evidence of the much di8'erent characteristics of
the random dimer model as compared to uncorrelated
random systems, as well as of the existence of a band

FIG. 2. Resistance as a function of the energy around the
first resonance for the same system as in Fig. 1(a) (lower
curve) and an uncorrelated random system with the same
defect concentration, c = 0.2.

I I I I I~ I I I

=10 '

=10
~ 8LABEL

n&'F "ilgwu~

10

10
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== 10

10000

PIG. 3. Resistance as a function of the position along the
chain for different energies: the resonant one E = 3.7626
(lower curve), 0.9E = 3.3863 (middle curve), and

0.8E„=3.0101. The parameters of the system are the same

as in Fig. 1(a).

of states with very good transport properties. Further
evidence is provided by Fig. 3: Not only the resonant
energy has a low resistance for any length of the chain
(lower curve), but also an energy far from it by a 10'Fo

factor (middle curve) shows a good behavior. Only when

one is at a 20% distance from the resonance the resis-
tance has large values (upper curve). The characteristics
of the three curves are an example of the dependence
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of the resistance on the system size discussed after its
definition in Eq. (22). The occurrence of approximately
periodic patterns at the resonant energy is most remark-
able. Similar patterns are observed in tight-binding mod-
els with incommensurate on-site energies corresponding
to extended states. Moreover, the transmission coefB-
cient (and then the resistance) in Kronig-Penney models
on quasiperiodic lattices show periodic oscillations as a
function of the system size, for energies belonging to al-
lowed bands but close to gaps. s4

B. Lyapunov coefBcient
I I I I I I I I I I I

5000

10
10

, 10
=10

== 10
=- 10
=10

I

10000

—12

The fact that around the resonances the transmission
coefficient becomes very close to unity (i.e., the resistance
has a deep minimum) suggests the possibility that the lo-
calization length of those states may be very large. To
this end, we investigate the Lyapunov coefficient, which,
we recall, is the inverse of the localization length, and
we plot the corresponding outcome in Figs. 4 and 5 for
energies close to the first resonant energy. As we did pre-
viously for the resistance, we first compare the Lyapunov
coefficient of our continuous dimer model to that of an
uncorrelated random system. The comparison (Fig. 4) is
actually dramatic, and re6ects the property that a large
number of states around the resonance have a localiza-
tion length larger than the system size (all those with

10 in Fig. 4). Notice, in contrast, the Hat de-
pendence of the Lyapunov exponent for the uncorrelated

FIG. 5. Lyapunov exponent as a function of the posi-
tion along the chain for different energies: the resonant one
E„=3.7626 (lower curve), 0.9E„=3.3863 (middle curve),
and 0.8E„=3.0101. The parameters of the system are the
same as in Fig. 1(a).

disorder. On the other hand, Fig. 5 indicates that for
the resonant energy and for energies close to it (0.9E„,
as discussed. in the preceding subsection) the localization
length is larger than the system size for all the system
sizes studied (low and middle curves); more distant en-
ergies have worse properties (upper curve). The peri-
odic pattern of the Lyapunov coefficient at the resonant
energy corresponds to that observed for the resistance,
previously discussed.

C. Density of states

10

10

There is another magnitude that exhibits the infiuence
of the short-range correlated disorder of the model we
are dealing with: the density of states and the integrated
density of states. Both deserve some separate comments.
The integrated density of states is plotted in Fig. 6. Due
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FIG. 4. Lyapunov exponent as a function of the energy
around the first resonance for the same system as in Fig. 1(a)
(lower curve) and an uncorrelated random system with the
same defect concentration, c = 0.2.

FIG. 6. The integrated density of states (IDOS) around the
first resonance for the same system as in Fig. 1(a). Notice the
slight increase of the slope that happens near the resonance.
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to the presence of the multivalued log function in the
defining Eq. (24), the calculation of this magnitude is
highly sensitive to the resolution in energies: If there is
jump in the log function between two points, inside the
energy step of the computation, that jump will be missed
and the IDOS will be subsequently underestimated. To
be sure of our results, we checked a number of cases com-
puting the IDOS with different energy steps, as small as
5x10; we have to stress that these computations are
very time consuming. %ith this accuracy we recover the
agreement between systems of different sizes (notice that
the magnitude we discuss is, in fact, the IDOS per vol-
ume) as regards the total number of states and the IDOS
structure. As to this last feature, we want to remark
that IDOS is well behaved over all the studied range of
energies. This implies that the same argument used by
Dunlap, Wu, and Phillips to show that ~N states were
extended holds in this case too, because the reasoning
depends crucially on the IDOS structure.

Figure 7 shows the DOS, obtained as the derivative
of the IDOS, for the same system of Fig. 6. The most
striking feature is the plateau around E„where the DOS
behaves very smoothly, while all other energies show a
highly &agmented structure. It has to be mentioned
that similar results arise also in tight-binding models.
This p/ateau provides us with further evidence of the ex-
istence of a large number of extended states, those cor-
responding to this region, whose boundaries are rather
clear. Finding that the DOS is nonfluctuating near E„
is easily understood in view of our previous results: In
this energy interval almost all states remain unscattered
by dimer defects and consequently no strong fluctuations
are expected. Conversely, the more distant the energy
is &om the resonant one, the more &agmented the DOS
due to the enhancement of the scattering by defects.

D. Parameter in8uence

It is important to report on how the above picture is
modified when the system parameters are changed. First

2.00

of all, the main characteristic of our model, the infinite
number of resonances, is confirmed by our calculations:
As already mentioned, the higher the order of the reso-
nance (meaning the higher n in [(2n—1)vr/2, (2n+1)m/2])
the wider the peak in the transmission coefBcient and
the other transport properties. The peak width increases
also when decreasing A'/A towards the unity ratio, and
decreases when increasing A' up to its maximum value
A' = 2. This is to be expected in view of the fact when
A' = A we recover the perfect lattice. With respect to
the other parameters, the number of scatterers and the
concentration of dimers both cause a narrowing of the set
of extended states when they are increased in the studied
range (100 ( K ( 50000, 0.1 & c & 0.65), although it
is important to stress that this set always has nonzero
width. Interestingly, when the number of scatterers in-

creases, the IDOS steepens, i.e. , the DOS exhibits a sensi-
tive increment around the resonant energy. Consequently
the number of extended states may be constant in spite
of the decreasing of the width of the transmission peak.

E. Average results

In this last subsection we have to deal with the aver-

age results. Some words are in order regarding the way
we compute these averages. The ensembles comprised
a number of realizations varying from 100 to 10000 to
check the convergence of the computed mean values. The
convergence was always satisfactory, with discrepancies
of less than 1% between all the ensembles. Once more,
to get accurate results for the IDOS is quite time con-
suming due to the necessary resolution in energies. As
to the results themselves, a look at the plots in Fig. 8 is
enough to show that the plots discussed previously are
those of typical realizations. The only visible effect of the
averaging is the smoothing out of the noisy features in
Figs. 1, 2, and 4; as their general shape is the same, we

are forced to conclude that all realizations show the same
peak of good transmission properties at exactly the same
interval around the predicted resonances. This is crucial:
It supports our claim that those are the main features of
our model irrespective of the particular realization of the
disorder. Moreover, the robustness of transport proper-
ties and DOS structure under changes of the parameters
is the most interesting factor for any possible application.

—1.00
V. MULTIFRACTAL ANALYSIS
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I L „ llLil I » L,I,II!, !
I I j0pp

5.25 6.75

FIG. 7. The density of states (DOS) around the first reso-
nance for the same system as in Fig. 1(a). Notice the smooth
plateau that happens near the resonance.

From the study of the transmission coefficient, the Lya-
punov coefficient, and the densitity of states we conclude
that there exists a number of electronic states that re-
main unscattered (or almost unscattered) by the dimer
defects. Such states are characterized by localization
lengths greater than the system size. However, this result
does not necessarily mean that those states are true ex-
tended, namely, states that cannot be normalized for the
infinite system. Then it becomes clear that we require
a different approach in order to elucidate the localized
or extended character of the eigenstates. The charac-
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terization of the spatial extend of the wave function to
all length scales may be accomplished by means of the
multi&actal analysis, as explained, for instance, in Ref.
26. Unscattered states are expected to extend homoge-
neously over the whole system, whereas scattered states
by defects should be localized at a particular region of
the system. The amplitude distribution of the electronic
states can be characterized by the scaling with the sys-
tem size of moments associated to the measure defined in
the system by us (in our case the probability of finding

the electron at a given point). We then use the standard
definition of those moments,

Notice that the second moment p2(N) coincides with the
inverse participation ratio (IPR), as introduced, for in-

stance, in Ref. 32. The multi&actal dimension Dq is de-

termined via the scaling pq(N) N (q i)+~, for q g l.
For localized states Dq vanishes for all q, whereas Dq
equals unity (the space dimension) for states spreading
uniformly.

Usually the IPR works fine to clearly discern localized
and extended states. Delocalized states are expected
to present small IPR, of order of 1V, while localized
states have larger IPR (in the limit of strong localization
should be unity whenever the electron is localized at sin-

gle site). A typical situation is presented in Fig. 9(a),
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FIG. 8. Transmission coefficient (a), resistance (b), and
Lyapunov exponent (c), around the first resonance, averaged
over 100 realizations of the same system as in Fig. 1(a).

FIG. 9. Inverse participation ratio for energies around the
first and second resonances for the same system as in Fig. 1(a),
but with N = 5000 scatterers. (a) dimer model; (b) an un-

correlated random system with the same defect concentration,
c = 0.2. The two plateaus in the 6rst plot are absent in the
second. The two plotted regions correspond to the two 6rst
allowed bands, [0.921, 9.870] and [11.771,39.478]. No points
are plotted outside those two regions due to the divergence of
the IPR in the forbidden gaps.



156 SANCHEZ, MACIA, AND DOMINGUEZ-ADAME 49

IIIIII« —1.50

—--2.00

I I I I I I I I I I I I I I I I I I I I I I

2 3 4

1Og, pN

——2.50

5.00:-3 00

——3.50

——4.00
3.95

——4.50
3.90:
3.85:—5 00
3.80—

I I I I I I I I I I I I I I I 1++0
cj 6

FIG. 10. Second moment, p, q, of the wave function for dif-
ferent energies (energies are indicated in the plot near their
corresponding curve). Note the progressive deviation from the
straight line when going to energies far from the resonance.

of the IPR with the system size. In Fig. 10 we show
the obtained results. We have checked that the IPR
roughly scales as N for energies close to the resonance
while a significative deviation &om this scaling behav-
ior appears when we progressively separate from the res-
onance neighborhood. Similar results are observed for
higher moments. These moments scale very accurately
as p~(X) X ( ) for energies close to resonance, as
illustrated in Fig. 11 for E = 3.8, whereas for more dis-
tant energies p~(N) follows a power law for small systems
but tends to a constant value for larger ones. Hence, the
generalized dimension Dq for states close to the resonance
is, within the numerical uncertainty, exactly one, i.e. , the
space dimension. This means that wave functions spread
homogeneously over the whole system, supporting our
claim that states belonging to the plateau of the IPR are
completely extended.

VI. CONCLUSIONS

for a system with the same parameters as in Fig. 1(a)
but with N = 5000 scatterers. For comparison, the IPR
of an uncorrelated random system with the same defect
concentration and the same length is shown in Fig. 9(b).
One can observe a deep minima of the IPR around the
resonant energies for the correlated model, while such
minima are completely absent in the uncorrelated one.
A close inspection of the IPR around these minima re-
veals the existence of a plateau with an IPR almost equal
to those exhibited at the resonant energies. This result
points out that in our model states becomes extended for
energies close to resonances. It is important to mention
here that the same results are obtained for larger values
of the defect concentration c. In particular, the value of
the IPR in the plateau only depends on the system size
but not on the defect concentration. Therefore, it seems
that the exact number of defects is immaterial regarding
the existence of extended wave functions.

To investigate in more detail the nature of electronic
states close to the resonance, we have studied the scaling

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I-q =2
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FIG. 11. Scaling of moments p2 to p6 with the system size
for energies 3.8 (dashed line) and 3.95 (solid line).

In summary, we have studied a Kronig-Penney model
with two kinds of sites, one of them constrained to appear
only pairwise. To this end, we have proposed a general-
ization of the Poincare map technique that allows us to
deal with any one-dimensional models. With this for-
malism, we find an inGnite number of energies for which
the reflection coeScient of a single defect must vanish.
After that, the tight-binding-like equation (with compli-
cated energy dependence) derived via the Poincare map
is studied through numerical evaluation of exact expres-
sions. All the magnitudes considered here, which are
the most representative of transport properties, support
the fact that these resonances give rise to a very large
number of extended states. These extended states are
characterized by a transmission coefficient close to unity,
a low resistance and a localization length much larger
than the system length. The basis for the existence of
extended states as relevant to acct the transport prop-
erties, namely, the smooth character of the DOS around
the resonance, holds, supporting our conclusions. The
increasing of the DOS around the resonance for large sys-
tems helps keep relevant the number of extended states.
In addition, multi&actal analysis clearly reveals the truly
extended nature of such states, whose generalized dimen-
sion coincides with the space dimension.

It is worth noticing that the absence of a well suited
mathematical framework to obtain analytical results (be-
yond the perturbative limit) on the behavior of random,
quasiperiodic, and incommensurate systems, has led to
the introduction of what we could refer to as diagnos-
tic tools. These include both transmission amplitude re-
lated magnitudes (Sec. IV) and multifractal analysis of
the wave-function measure (Sec. V). Although the infor-
mation that anyone of these tools can provide isolately is
not conclusive as rigorous proof, when grouped together
they produce quite compelling evidence about the na-
ture of the considered states. We feel that this point has
been successfully proved through our extensive numerical
study and may be of interest to other researchers working
in this field.



49 SUPPRESSION OF LOCALIZATION IN KRONIG-PENNEY. . . 157

As a 6nal conclusion, we want to stress that the fact
that we have more than one resonance is very impor-
tant, and above any other consideration, may have rele-
vant consequences in actual situations. A key observation
is that the resonant energy values do not depend at all
on the impurity concentration. Therefore, by modifying
this concentration, we could shift the Fermi level of the
system to match one of these resonances, either the one
above or the one below its previous position. In this case,
when the Fermi level reaches the set of resonant states, a
large electrical conductance peak should appear. In this
regard, it is known that polyaniline shows an insulator-
metal transition, with the dopant concentration acting
as a tuning parameter. This efFect could also be rele-
vant in the physical contexts mentioned at the beginning
of this paper, most interestingly in the case of layered
superconductors or in disordered superlattices. This
possibility may open new perspectives in the design of
electronic devices as well as in the design of materials
with special properties. Further theoretical work towards
a more comprehensive understanding of these questions is
needed in order to pursue experimental evidences of this
suppression of localization. In addition, there could be
a quite large class of models, which would include more

realistic factors than the ones we have already accounted
for here, with good transport properties. We believe that
the generalized Poincare map (see Sec. II) could provide
a powerful theoretical tool in dealing with realistic ran-
dom systems with correlated or uncorrelated disorder. It
could even happen that there exists the possibility of a
certain degree of "engineering" of transport properties by
introducing special kinds of defects. To achieve an ap-
plicable knowledge of this possibilities, it is important to
continue working along the lines we are suggesting here,
bringing the suppression of localization models closer to
reality.
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