
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–18
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Applying the dynamics of evolution to achieve reliability in
master-worker computing

Evgenia Christoforou1, Antonio Fernández Anta1, Chryssis Georgiou2∗,
Miguel A. Mosteiro3, and Angel Sánchez4

1Institute IMDEA Networks, Madrid, Spain
2University of Cyprus, Nicosia, Cyprus
3Kean University, Union, NJ, USA &

Universidad Rey Juan Carlos, Madrid, Spain
4Universidad Carlos III de Madrid, Madrid, Spain &

BIFI Institute, Zaragoza, Spain

SUMMARY

We consider Internet-based Master-Worker task computations, like SETI@home, where a master process
sends tasks, across the Internet, to worker processes; workers execute, and report back some result. However,
these workers are not trustworthy and it might be at their best interest to report incorrect results. In such
master-worker computations, the behavior and the best interest of the workers might change over time.
We model such computations using evolutionary dynamics and we study the conditions under which the
master can reliably obtain task results. In particular, we develop and analyze an algorithmic mechanism
based on reinforcement learning to provide workers with the necessary incentives to eventually become
truthful. Our analysis identifies the conditions under which truthful behavior can be ensured, and bounds the
expected convergence time to that behavior. The analysis is complemented with illustrative simulations.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Performing tasks, Internet-based computing, Evolutionary dynamics, Reinforcement
learning, Algorithmic mechanism design.

1. INTRODUCTION

Motivation: As an alternative to expensive supercomputing parallel machines, Internet provides
a feasible computational platform for processing complex computational jobs. Several Internet-
based applications operate on top of this global computation infrastructure. Examples are volunteer-
based “@home” projects [6] such as SETI [34] and profit-seeking computation platforms such as
Amazon’s Mechanical Turk [4].

Although the potential is great, the use of Internet-based computing is limited by the
untrustworthy nature of the platform’s components [6, 28, 30]. In SETI for example, there is a

∗Correspondence to: Dept. of Computer Science, University of Cyprus, Nicosia, Cyprus. Email: chryssis@cs.ucy.ac.cy

Contract/grant sponsor: This work is supported by the Cyprus Research Promotion Foundation grant
TΠE/ΠΛHPO/0609(BE)/05, the National Science Foundation (CCF-0937829, CCF-1114930), Comunidad de Madrid
grant S2009TIC-1692, Spanish PRODIEVO and RESINEE grants and MICINN grant TEC2011-29688-C02-01, and
National Natural Science Foundation of China grant 61020106002.

Conference version: A preliminary version of this work, entitled “Achieving Reliability in Master-Worker Computing
via Evolutionary Dynamics” appears in the proceedings of Euro-Par 2012, pages 451–463.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

machine, call it the master, that sends tasks, across the Internet, to volunteers’ computers, call them
workers, that execute and report back some result. However, these workers may not be trustworthy
and it might be at their best interest to report incorrect results; that is, workers (or their owners) can
be viewed as rational [2,28,47]. In SETI, the master attempts to attenuate the impact of these bogus
results by assigning the same task to several workers and comparing their outcomes (i.e., redundant
task allocation is employed [6, 46]).

Prior work [24, 25, 52] has shown that it is possible to design algorithmic mechanisms with
reward/punishment schemes so that the master can reliably obtain correct task results. We view
these mechanisms as one-shot in the following sense: In a round, the master sends a task to be
computed to a collection of workers, and the mechanism, using auditing and reward/punishment
schemes, guarantees (with high probability) that the master gets the correct task result. For another
task to be computed, the process is repeated (with the same or different collection of workers) but
without taking advantage of the knowledge gained.

Given a long running computation (such as SETI-like master-worker computations), it can be
the case that the best interest, and hence the behavior of the workers, might change over time.
The question then arises: Would it be possible to design a mechanism for performing many tasks,
over the course of a possibly infinite computation, that could benefit from the repeated interaction
between a master and the same collection of workers?
Our approach: In this work we provide a positive answer to the above question. To do so, we
introduce the concept of evolutionary dynamics (widely used under the biological and social
perspective) and apply it to Internet-based master-worker task computing. More specifically, we
employ reinforcement learning [14, 48] to model how system entities, or learners, interact with the
environment to decide upon a strategy, and use their experience to select or avoid actions according
to the consequences observed. Positive payoffs increase the likelihood of reusing the strategy just
chosen, and negative payoffs reduce it. Payoffs are seen as parameterizations of players’ responses to
their experiences. Empirical evidence [11,15] suggests that reinforcement learning is more plausible
with players that have information only on the payoffs they receive; i.e., they do not have knowledge
of the strategies involved. This model of learning fits nicely in our master-worker computation
problem: each worker have no information about the master and the other workers’ strategies and
it does not know the set of strategies that led to the payoff it receives. The workers have only
information about the strategies they choose at each round and their own received payoffs. The
master also has minimal information about the workers and their intentions (to be truthful or not).
Thus, we employ reinforcement learning for both the master and the workers in an attempt to build
a reliable computational platform.
Our contributions:
• To the best of our knowledge, this is the first work that studies the evolutionary dynamics

of Internet-based master-worker task computing through reinforcement learning. We develop
and analyze a mechanism based on reinforcement learning to be used by the master and the
workers. In particular, in each round, the master allocates a task to the workers and decides
whether to audit their responses with a certain probability pA. Depending on whether it
audits or not, it applies a different reward/punishment scheme, and adjusts the probability
pA for the next round (also known as the next task execution). Similarly, in a round, each
worker i decides, with a certain probability pCi, whether it will report an incorrect result or
it will truthfully compute and report the correct task result. Depending on the outcome of its
decision, measured by the increase or the decrease of the worker’s utility, the worker adjusts
its probability pCi for the next round.

• We show necessary and sufficient conditions under which the mechanism ensures eventual
correctness. That is, we establish the conditions under which, after some finite number of
rounds, the master obtains the correct task result in every round, with minimal auditing,
while keeping the workers satisfied (with respect to their utility). Eventual correctness can
be viewed as a form of Evolutionary Stable Strategy [19,27] as studied in Evolutionary Game
Theory [50]: even if a “mutant” worker decides to change its strategy to cheating, it will soon
be brought back to an honest strategy.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 3

• Finally, we show that our mechanism, when adhering to the above-mentioned conditions,
reaches eventual correctness quickly. In particular, we show analytically probabilistic bounds
on the convergence time, as well as bounds on the expected convergence time. Our analysis
is complemented with simulations, for a variety of parameter combinations likely to occur in
practice.

Background and Related Work: An increasing number of works that apply game theory to
distributed computing exists, including research on Internet routing, resource/facility location and
sharing, containment of virus spreading, secret sharing, P2P services, and task computations. For
more discussion on the connection between game theory and distributed computing we refer the
reader to the surveys by Halpern [29] and by Abraham et al. [1], and to the book by Nisan et
al. [41].

The problem of achieving reliability in master-worker computations has recently been studied
under two different views: from a “classical” distributed computing view [23, 33, 46] and from a
game-theoretic view [24, 52]. Under the first view, the workers are classified as either malicious
(Byzantine) or altruistic, based on a predefined behavior. The malicious workers have a “bad”
behavior which results in reporting an incorrect result to the master. This behavior is, for example,
due to a hardware or a software error or due to an ill-state of the worker, such as being a wrongdoer
intentionally. Altruistic workers exhibit a “good” behavior, that is, they always compute and return
the correct task result. From the perspective of the master, the altruistic workers are the “correct”
ones. Under this view, “classical” distributed computing models are defined (e.g., a fixed bound
on the probability of a worker being malicious is assumed) and typical malicious-tolerant voting
protocols are designed.

Under the classical game-theoretic view, workers act on their own self-interest and they do
not have an a priori established behavior (malicious or altruistic). They are assumed to be
rational [2, 28]. In other words, the workers decide on whether they will be honest and report
the correct task result, or cheat and report a bogus result, depending on which strategy increases
their benefit or utility. Under this view, Algorithmic Mechanisms [2, 17, 40] are employed, where
games are designed to provide the necessary incentives so that processors’ interests are best served
by acting “correctly.” In particular, the master provides some reward (resp. penalty) should a worker
be honest (resp. cheat). The design objective is for the master to force a desired unique Nash
equilibrium (NE) [39], i.e., a strategy choice by each worker such that none of them has an incentive
to change it. That Nash equilibrium is the one in which the master achieves a desired probability of
obtaining the correct task result.

In a previous work by Fernández Anta et al. [24], a game-theoretic approach was used to achieve
reliability in a similar Internet-based master-worker computation. A master processor assigns, across
the Internet, a single computational task to a set of potentially untrusted worker processors and
collects their responses. A weak form of collusion, as in this work, is assumed where all workers
that cheat return the same incorrect result. Game-theoretic models for the problem were designed
and analyzed, e.g., one master and one worker, several workers, etc. For each of those models, a
mechanism that achieves high reliability under the same payoff system that we use was designed.
In [24], besides rewarding the majority of workers, as we do here, other reward models where
considered, e.g., rewarding all workers, rewarding none of the workers, etc. The work in [24] was
later extended [25] to also consider the possibility of workers being malicious.

In a work by Yurkewych et al. [52] a similar game-theoretic approach is studied. The master
can audit the results returned by rational workers with a tunable probability. Bounds for that audit
probability are computed to guarantee that workers have incentives to be honest in three scenarios:
redundant allocation with and without collusion, and single-worker allocation. They conclude that,
in their model, single-worker allocation is a cost-effective mechanism, specially in presence of
collusion. As opposed to [24], it is possible that a decision is not reached in a round, in which case
a different set of workers is selected and the process is repeated (but without using any knowledge
of the previous unsuccessful round).

The works in [24] and [52] construct a mechanism assuming a number of parameters are known
to the master and the workers. In addition, the computation between master and workers is viewed

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

as one-shot: each round of task executions is independent of the previous round. That is, their work
does not consider the advantage of repeated communication with the same set of workers. Moreover
it is expected that in a master-worker computation the behavior and the best interest of the workers
change over time. A dynamic environment like that could be analyzed using evolutionary dynamics,
originally introduced in biology as a tool to study the mathematical principles according to which
life is evolving [42]. Since then, a number of fields were inspired by the principles of evolutionary
dynamics (e.g., sociology, economics, artificial intelligence) and a variety of mechanisms was
developed, aiming to accurately model the process of evolution. Our work is inspired by dynamics
of evolution as a mean to model workers adaptation to a truthful behavior.

The dynamics of evolution have been studied under the principles of Evolutionary Game Theory
(EGT). Maynard-Smith and Price [37,38] introduced the concept of EGT in an effort to apply game
theoretical ideas to understand evolving populations of lifeforms. This made Maynard-Smith [37]
adjust the traditional concept of strategy, equilibrium, and the nature of a player’s interaction, so
that a player would learn how to optimize its behavior and maximize its return. However, while
in traditional Game Theory players choose a strategy from their strategy sets, EGT in biology is
dealing with species inheriting possibly mutated strategies. When referring to social entities such
as humans, evolution is understood as a learning process akin to “cultural evolution” [31]. Cultural
evolution implies an analogy between learning and biological evolution. For the existing analogies
between learning, at the individual level, and biological evolution, we refer the reader to a paper by
Borgers and Sarin [13].

In EGT, instead of the Nash equilibrium, Maynard-Smith and Price used the Evolutionarily Stable
Strategy (ESS) concept [19, 27, 45, 50]. A strategy is called evolutionarily stable if, when the whole
population is using this strategy, any group of invaders (mutants) using a different strategy will
eventually die away over multiple generations (evolutionary rounds). All ESS are Nash equilibria
but the reverse is not true. Our work is driven by the concept of ESS and we wish to have a similar
stable strategy among workers that would guarantee reliability. Even if a mutant worker decides to
change its strategy to cheating, it will be soon brought back to an honest strategy. Instead of the one-
shot and repeated games of classical game theory, EGT assumes that the game is played repeatedly
by players randomly drawn from large populations, uninformed of the preferences of opponents. In
our work we do not wish to change the set of players as evolutionary rounds progress, but we rather
talk about “cultural evolution”, where workers change their strategies as a process of learning, rather
than being replaced themselves.

While evolution operates on the global distribution of strategies within a given population,
reinforcement learning [48] operates on the individual level of each member of the population.
A well-known model of reinforcement learning is Bush and Mosteller’s model [14]. In this model,
the players have limited information and they play in discrete time repeatedly the same normal-
form game. At each point in time, the players are characterized by a probability distribution over
their strategy sets. Players’ choices are random, since they are affected by some unpredictable
“psychological” factor. This probability distribution is adjusted over time in response to experience.
This experience is gained through repeated interactions of the players with the system, based on
their strategies and the received payoffs. Positive payoffs reinforce the strategy just chosen, and
negative payoffs discourage the use of that strategy.

Specifically, Bush and Mosteller’s model is an aspiration-based reinforcement learning model:
Players adapt by comparing their experience with an aspiration level. There are several models of
how aspirations are formed and adjusted over time, formally described in a study by Bendor et
al. [11]. In the present paper, we use a simple model where aspiration is fixed by the workers and
does not change during the evolutionary process (as in [10]). For more information on the different
reinforcement learning models and comparisons between them we refer the reader to a paper by
Laslier et al. [35] and a study by Izquierdo and Izquierdo [32].

A survey by Phelps et al. [43] and an article by Conitzer and Sandholm [16] take a new approach
on Mechanism Design by introducing the concept of Evolutionary Mechanism Design. Evolutionary
mechanism design assumes an engineering approach, based on an incremental process that creates
a partly automated mechanism design. The evolutionary mechanism has a continuous interaction

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 5

and feedback from the current mechanism, as opposed to classical mechanism design, which after
the mechanism is introduced in the system, remains in the same NE forever. Looking at it from a
different perspective, evolutionary mechanism design is analogous to evolutionary game theory. Just
as players may be forced to gradually adjust their strategies, in an analogous manner mechanisms
are gradually making adjustments in their rules with respect to what strategies are currently in play.
In some way, our mechanism can be seen as an evolutionary mechanism, since the probability of
auditing of the master and the probability of cheating of the workers change, which is similar to
changing the mechanism.

Distributed computation in the presence of selfishness was studied within the scope of
combinatorial agencies in Economics [7–9, 20]. The basic model considered is a combinatorial
variant of the classical principal-agent problem [36]: A master (principal) must motivate a collection
of workers (agents) to exert costly effort on the master’s behalf, but the workers’ actions are hidden
from the master. Instead of focusing on each worker’s actions, the focus is on complex combinations
of the efforts of the workers that influence the outcome. The principal-agent approach deals in
general with designing contracts between the principal and the workers that allow the principal
to get the most out of the workers without knowing a priori what their actual capabilities are. One
difference with respect to our master-worker framework is that, the worker’s actions cannot really be
viewed as hidden in our setting. Another important difference is that our scheme considers worker
punishment, as opposed to the schemes in combinatorial agency where workers cannot be fined
(limited liability constraint); this is possible in our framework as worker’s actions are contractible
(either a worker truthfully performs a task or not).

In the work of Rose and Willemain [44] the principal-agent problem is extended to evolutionary
learning, and bounded rationality of the agents is assumed. Players’ learning is simulated with a
genetic algorithm that roughly mimics selection and mutations in biological evolution. Changes in
the system are externally induced through the use of incentives. The agents’ learning is aided by
the principal’s incentives that are used to adjust the learning, according to the output the principal
desires. The principal is also able to use an artificial selection procedure to identify high performing
agents for its own benefit.

Compared with the work of Rose and Willemain [44], in our line of work the learning model is
different (in addition to the differences our work has with the principal-agent model). We assume
that the learning procedure of the players remains the same through the evolutionary process. In
contrast, in the more general model of Rose and Willemain, the learning procedure of the players
may change over time and players can experience mutations. In both works incentives are used to
impose a desired behavior over time. But in [44] bounded rationality has been used, while in our
work no cognitive limitation of the workers is assumed. As a future direction, our model could be
enriched by including ‘biological learning’ through replicator dynamics. While in [44] the principal
artificially selects the agents that increase performance, in our context the master could, by using a
reputation technique, exclude from the computation low performing workers.

2. MODEL AND DEFINITIONS

Master-Worker Framework: We consider a distributed system consisting of a master processor that
assigns, over the Internet, computational tasks to a set W of n workers (with out loss of generality,
we assume that n is odd). In particular, the computation is broken into rounds. In each round the
master sends a task to be computed to the workers and the workers return the task result. The master,
based on the workers’ replies, must decide on the value it believes is the correct outcome of the task
in the same round. The tasks considered in this work are assumed to have a unique solution; although
such limitation reduces the scope of application of the presented mechanism [49], there are plenty of
computations where the correct solution is unique: e.g., any mathematical function. Note that in this
work we do not focus on any specific application. Therefore, applying our mechanism in practice
may require to pay attention to details depending on the specific application considered. In this
work security issues are not considered. Security can be achieved by cryptographic means, as done
in BOINC [3], which allows for encrypting communication, authenticating master and workers,
signing the code of tasks and executing tasks in sandboxes.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

Following Abraham et al. [2], and Shneidman and Parkes [47], we assume that workers are
rational, that is, they are selfish in a game-theoretic sense and their aim is to maximize their benefit
(utility) under the assumption that other workers do the same. In the context of this paper, a worker
is honest in a round when it truthfully computes and returns the task result, and it cheats when it
returns some incorrect value. So, a worker decides to be honest or to cheat depending on which
strategy maximizes its utility. We denote by prCi the probability of a worker i cheating in round r.
This probability is not fixed, as the worker adjusts it over the course of the computation.

While it is assumed that workers make their decision individually and with no coordination, it
is assumed that all the workers that cheat in a round return the same incorrect value (as done, for
example, in [23, 24, 46]). This assumption yields a worst case scenario (and hence analysis) for
the master with respect to obtaining the correct result; it subsumes models where cheaters do not
necessarily return the same answer. (In some sense, this can be seen as a cost-free, weak form of
collusion.)
Auditing, Payoffs, Rewards and Aspiration: To “persuade” workers to be honest, the master
employs, when necessary, auditing and reward/punishment schemes. The master, in a round, might
decide to audit the response of the workers, at a cost. In this work, auditing means that the master
computes the task by itself, and checks which workers have been honest. We denote by pA the
probability of the master auditing the responses of the workers. The master can change this auditing
probability over the course of the computation. Unless otherwise stated, we assume that there is
a value pminA > 0 so that at all times pA ≥ pminA . Furthermore, the master can reward and punish
workers, which can be used (possibly combined with auditing) to encourage workers to be honest.
When the master audits, it can accurately reward and punish workers. When the master does not
audit, it decides on the majority of the received replies, and it rewards only the majority. We refer to
this as the Rm reward scheme (as presented in previous works).

The payoff parameters considered in this work are detailed in Table I. Note that the first letter of
the parameter’s name identifies whose parameter it is.M stands for master andW for worker. Then,
the second letter gives the type of parameter. P stands for punishment, C for cost, and B for benefit.
Observe that there are different parameters for the reward WBY to a worker and the cost MCY of
this reward to the master. This models the fact that the cost to the master might be different from the
benefit for a worker.

WPC worker’s punishment for being caught cheating
WCT worker’s cost for computing the task
WBY worker’s benefit from master’s acceptance
MPW master’s punishment for accepting a wrong answer
MCY master’s cost for accepting the worker’s answer
MCA master’s cost for auditing worker’s answers
MBR master’s benefit from accepting the right answer

Table I. Payoffs. The parameters are non-negative.

We assume that each worker i has an aspiration ai (the same in all rounds) which is the minimum
benefit it expects to obtain in a round. In order to motivate the worker to participate in the
computation, the master must ensure that WBY ≥ ai; in other words, the worker has the potential
of its aspiration to be covered. We assume that the master knows the aspirations. This information
can be included, for example, in a contract the master and the worker agree upon, prior to the start
of the computation.

Among the parameters involved, we assume that the master has the freedom of choosing WBY
and WPC; by tuning these parameters and choosing n, the master tries to achieve the goal of eventual
correctness (see below). All other parameters can either be fixed because they are system parameters,
or may also be chosen by the master (except the aspiration, which is a parameter set by each worker).
Eventual Correctness: The goal of the master is to eventually obtain a reliable computational
platform. In other words, after some finite number of rounds, the system must guarantee that the
master obtains the correct task results in every round with probability 1. We call such property
eventual correctness.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 7

Algorithm 1 Master’s Algorithm

pA ← x, where x ∈ [pminA , 1]
for r← 1 to∞ do

send a task T to all workers in W
upon receiving all answers do

audit the answers with probability pA
if the answers were not audited then

accept the majority
else
p′A ← pA + αm(cheaters(r)/n− τ)

pA ← min{1,max{pminA , p′A}}
∀i ∈W : pay/charge Πito worker i

Algorithm 2 Algorithm for Worker i

pCi ← y, where y ∈ [0, 1]
for r← 1 to∞ do

receive a task T from the master
set Si ←−1 with probability pCi, and

Si ← 1 otherwise
if Si = 1 then σ← compute(T)
else σ← arbitrary solution
send response σ to the master
get payoff Πi
p′Ci ← pCi − αw(Πi − ai)Si
pCi ← max{0,min{1, p′Ci}}

3. ALGORITHMIC MECHANISM

We now detail the algorithms run by the Master and the workers.
Master’s Algorithm (Alg. 1): The master’s algorithm begins by choosing the initial probability of
auditing. After that, at each round, the master sends a task to all workers and, after all answers are
received (a reliable network is assumed), the master audits the answers with probability pA. In the
case the answers are not audited, the master accepts the value contained in the majority of answers
and continues to the next round with the same probability of auditing. In the case the answers are
audited, the value pA of the next round is reinforced (i.e., modified according to the outcome of the
round). Then, the master rewards/penalizes the workers accordingly.

The master initially has scarce or no information about the environment (e.g., workers initial pC).
The initial probability of auditing will be set according to the information the master possesses. For
example, if it has no information about the environment, a safe approach may be to initially set
pA = 0.5.

Observe that, when the answers are not audited, the master has no information about the number
of cheaters in the round. Thus, the probability pA remains the same as in the previous round. When
the answers are audited, the master can determine the number of cheaters; we denote by cheaters(r)
the number of cheaters in round r. Then, the master adapts the auditing probability pA according to
this number. Observe that the algorithm guarantees pA ≥ pminA . This, combined with the property
pminA > 0, will prevent the system to fall in a permanent set of “bad” states where pA = 0 and
pC > 0. A discount factor, which we call tolerance and denote by τ , expresses the master’s tolerable
ratio of cheaters (typically, we will assume τ = 1/2). Hence, if the proportion of cheaters is larger
than τ , pA will be increased, and otherwise, pA will be decreased. The amount by which pA changes
depends on the change in the number of cheaters, modulated by a learning rate αm. This latter value
determines to what extent the newly acquired information will override the old information. (For
example, if αm = 0 the master will never adjust pA.)

Workers’ Algorithm (Alg. 2): The workers’ algorithm begins with each worker i deciding an initial
probability of cheating pCi. At each round, each worker receives a task from the master and, with
probability 1− pCi calculates the task, and replies to the master with the correct answer. If the
worker decides to cheat, it fabricates an answer and sends the incorrect response to the master. (We
use a flag Si to model the decision of a worker i to cheat or not.) After receiving its payoff (detailed
in the analysis section), each worker i changes its pCi according to the payoff Πi received, the chosen
strategy Si, and its aspiration ai. Observe that the workers’ algorithm guarantees 0 ≤ pCi ≤ 1.

Workers have a learning rate αw. We assume that all workers have the same learning rate, that is,
they learn in the same manner (see the discussion in [48]; the learning rate is called step-size there);
note that our analysis can be adjusted to accommodate also workers with different learning rates.
We choose the value of αw so that αw(ai + WPC) < 1, ∀i ∈W . Otherwise, the system could enter
in an oscillating condition where some nodes alternate pC between 0 and 1 never converging to a
stable state, which is necessary to guarantee reliability.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

4. ANALYSIS

In this section we analyze the mechanism presented in Section 3. We model the evolution of the
mechanism as a Markov chain, and we prove necessary and sufficient conditions for achieving
eventual correctness. We provide analytical evidence that convergence to eventual correctness can
be reached rather quickly. Observe in Algorithms 1 and 2 that there are a number of variables that
may change in each round. We will denote the value of a variableX after a round r with a superindex
r, as Xr.

4.1. The Mechanism as a Markov Chain

We analyze the evolution of the master-workers system as a Markov chain. To do so, we first define
the set of states and the transition function as follows.

Let the state of the Markov chain be given by the vector of probabilities (pA, pC1, pC2, . . . , pCn).
Then, we denote the state after round r by (prA, p

r
C1, p

r
C2, . . . , p

r
Cn). Observe from Algorithms 1 and

2 that any state (pA, pC1, pC2, . . . , pCn) in which pA ∈ [pminA , 1] and pCi ∈ [0, 1] for each worker
i, is a possible initial state of the Markov chain. The workers’ decisions, the number of cheaters,
and the payoffs in round r are the stochastic outcome of the probabilities used in round r. Then,
restricted to prA ∈ [pminA , 1] and prCi ∈ [0, 1], we can describe the transition function of the Markov
chain in detail. For each subset of workers F ⊆W , P (F) =

∏
j∈F p

r−1
Cj

∏
k/∈F (1− pr−1Ck) is the

probability that the set of cheaters is exactly F in round r. Then, we have the following.

• With probability pr−1A · P (F), the master audits when the set of cheaters is F , and then,

(0) the master updates pA as prA = pr−1A + αm(|F |/n− τ), and
(1) each worker i ∈ F updates pCi as prCi = pr−1Ci − αw(ai + WPC),
(2) each worker i /∈ F updates pCi as prCi = pr−1Ci + αw(ai − (WBY −WCT)).

• With probability (1− pr−1A)P (F), the master does not audit when F is the set of cheaters.
Then, the master does not change pA and the workers update pCi as follows. For each i ∈ F ,

(3) if |F | > n/2 then prCi = pr−1Ci + αw(WBY − ai),
(4) if |F | < n/2 then prCi = pr−1Ci − αw · ai,

and for each i /∈ F ,

(5) if |F | > n/2 then prCi = pr−1Ci + αw(ai + WCT),
(6) if |F | < n/2 then prCi = pr−1Ci + αw(ai − (WBY −WCT)).

The following terminology will be used throughout. Let a covered worker be one that is paid at
least its aspiration ai and the computing cost WCT . In any given round r, let an honest worker be
one for which pr−1C = 0. Let an honest state be one where the majority of workers are honest. Let an
honest set be any set of honest states. We refer to the opposite cases as uncovered worker, cheater
worker (pr−1C = 1), cheat state, and cheat set respectively.

4.2. Conditions for Eventual Correctness

We show the conditions under which the system can guarantee eventual correctness. We begin with
some terminology. Let a set of states S be called closed if, once the chain is in any state s ∈ S, it
will not move to any state s′ /∈ S. (A singleton closed set is called an absorbing state.) For any given
set of states S, we say that the chain reaches (resp. leaves) the set S if the chain reaches some state
s ∈ S (resp. reaches some state s /∈ S).

In order to show eventual correctness, we must show eventual convergence to a closed honest set.
Thus, we need to show (i) that there exists at least one such closed honest set, (ii) that all closed sets
are honest, and (iii) that one honest closed set is reachable from any initial state. Lemma 1 shows
that, if pA = 0 then some cheat set is closed. Given (ii), the necessity of pminA > 0 is motivated by
this claim. Hence, pA > 0 is assumed for the rest of the analysis. Lemma 2 shows that, if the majority
of workers is uncovered, no honest set is closed. Given (i), the necessity of a covered majority is
motivated. Hence, it is assumed that the majority of workers are covered for the rest of the analysis.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 9

Lemma 3 shows that the honest set including all the states in which all covered workers are honest
is closed, which proves (i). Lemma 4 shows that any honest set where some covered worker is not
honest is not closed, and Lemma 5 shows that any set that is not honest is not closed. Together,
they prove (ii), and also (iii) because, if only honest sets are closed, there is a way of going from
non-honest sets to one of them. The overall result is established in Theorem 6.

Lemma 1
Consider any set of workers Z ⊆W such that ∀i ∈ Z : WBY ≥ ai. If |Z| > n/2, then the set of
states S = {(pA, pC1, . . . , pCn)|(pA = 0) ∧ (∀w ∈ Z : pCw = 1)}, is a closed cheat set.

Proof
Observe first that each state in S is a cheat state, since the master does not audit and a majority of
workers cheat. From transition (3) it can be seen that, if the chain is in a state of the set S before
round r, for each worker i ∈ Z, prCi ≥ p

r−1
Ci = 1 holds. In addition, pA does not change. Hence,

once the chain has reached a state in the set S, it will move only to states in the set S.

As already mentioned, from this lemma, it is concluded that pA > 0 is required for eventual
correctness. From now on, it is assumed that in all rounds pA ≥ pminA > 0.

Lemma 2
If there exists a set of workers Z ⊆W such that |Z| > n/2 and ∀i ∈ Z : WBY < ai + WCT then
no honest set is closed.

Proof
Recall that we choose the value of αw so that ∀i ∈W : αw(ai + WPC) < 1. Consider any starting
state, which by assumption is an honest state, S = {(pA, pC1, . . . , pCn)|∃Y ⊆W : (|Y | > n/2) ∧
(∀w ∈ Y : pCw = 0)}.

Let the set Z be divided in three sets depending on whether the workers are honest (pC = 0),
cheaters (pC = 1) or cheat with a probability between zero and one (0 < pC < 1). We denote these
sets by Z0, Z1 and Zb respectively. In the next round the master audits (possible since pA > 0),
workers in Z0 and Zb do not cheat and workers in Z1 cheat. Then from transition (2) all workers
in Z0 and Zb increase their probability of cheating. From transition (1) all workers in Z1 decrease
their cheating probability by αw(ai + WPC). Since all workers in Z1 are cheater workers (pC = 1)
and αw(ai + WPC) < 1, after this round their cheating probability is larger than 0. Hence, for all
workers in Z their cheating probability is larger than 0 and the new state is not honest.

Lemma 3
Consider any set of workers Z ⊆W such that ∀i ∈ Z : WBY ≥ ai + WCT and ∀j /∈ Z : WBY <
aj + WCT . If |Z| > n/2, then the set of states S = {(pA, pC1, . . . , pCn)|∀w ∈ Z : pCw = 0}, is an
honest closed set.

Proof
Consider any round r before which the state of the chain is s ∈ S. Given that |Z| > n/2, at round r
we have cheaters(r) < n/2. Then, for all workers in Z, the transition function is either (2) or (6),
depending on whether the master audits or not. Then, given that WBY ≥ ai + WCT for all workers
in Z, their probability of cheating after round r is still 0. Hence, the claim follows.

Lemma 4
Consider any set of workers Z ⊆W such that ∀i ∈ Z : WBY ≥ ai + WCT and ∀j /∈ Z : WBY <
aj + WCT . Then, for any set of states S = {(pA, pC1, . . . , pCn)|∃Y ⊆W : (|Y | > n/2) ∧ (∀w ∈
Y : pCw = 0) ∧ (Z * Y)}, S is not a closed set.

Proof
For the sake of contradiction assume that S is a closed set. Then, after a round r when the state is s ∈
S, the chain remains in S forever. Given that |Y | > n/2 and the assumption that S is a closed set, at
all rounds r′ > r we must have cheaters(r′) < n/2. Then, given that ∀i ∈ Z : WBY ≥ ai + WCT ,
from the transition function it can be seen that the probability of cheating of all workers in Z

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

decreases in every round, independently of whether the master audits or not. But then, at some
round r′ > r, for all i ∈ Z, pr

′

Ci = 0 must hold. Then, Z ⊆ Y at round r′, showing that S is not
closed.

Lemma 5
Consider any set of workers Z ⊆W such that ∀i ∈ Z : WBY ≥ ai + WCT and ∀j /∈ Z : WBY <
aj + WCT . If |Z| > n/2 and pA > 0, then for any set of states S = {(pA, pC1, . . . , pCn)|∃Y ⊆W :
(|Y | > n/2) ∧ (∀w ∈ Y : pCw > 0)}, S is not a closed set.

Proof
To prove this claim, it is enough to show that, after a round r when the state is s ∈ S, with some
positive probability the chain moves out of S. Assume that, starting at some round r′ ≥ r, the
master audits in all rounds in [r′, r′′], for a suitable r′′. Such assumption is valid because pA > 0.
Then, given that ∀i ∈ Z : WBY ≥ ai + WCT , from the transition function it can be seen that the
probability of cheating of all workers in Z decreases in every round by an amount not smaller than
αw min{WBY − ai −WCT ,WPC + ai}. But then, at some round r′′ > r, for all i ∈ Z we have
pr

′′

Ci = 0. Therefore, |Y | < n/2 at round r′′ showing that S is not closed.

The following theorem shows that there is a positive probability of reaching some state after
which correctness can be guaranteed, as long as for a chosen majority of workers, the payment is
enough to cover their aspiration and cost of performing the task. Its proof follows directly from
Lemmas 3– 5.

Theorem 6
If pA > 0 and for all i ∈W : αw(ai + WPC) < 1 then, in order to guarantee with positive
probability that, after some finite number of rounds, the system achieves eventual correctness, it
is necessary and sufficient to set WBY ≥ ai + WCT for all i ∈ Z in some set Z ⊆W such that
|Z| > n/2.

Remark: From Algorithm 1 it is easy to see that once the closed set S = {(pA, pC1, . . . , pCn)|∀w ∈
Z : pCw = 0} is reached, eventually pA = pminA and stays such forever.

4.3. Convergence Time

Theorem 6 gives necessary and sufficient conditions to achieve eventual correctness. However, in
order to have a practical system, it is necessary to bound the time taken to achieve it, which we call
the convergence time. In other words, starting from any initial state, we want to compute the number
of rounds that the Markov chain takes to reach an honest closed set. In this section, we show bounds
on the convergence time.
Expected Convergence Time: Let C be the set of all covered workers. We assume, as required by
Theorem 6, that |C| > n/2. From transitions (1) and (2) in the Markov chain definition, it can be
seen that it is enough to have a consecutive sequence of 1/(αw min{WBY − ai −WCT ,WPC +
ai}) audits to enforce pC = 0 for all covered workers i ∈ C. This gives the following upper bound
on the convergence time:

Theorem 7
The expected convergence time is at most ρ/(pminA)ρ, where ρ = 1/(αw mini∈C{WBY − ai −
WCT ,WPC + ai}) and C is the set of covered workers.

Proof
The expected convergence time is upper bounded by the expected time for ρ consecutive audits.
Consider the time divided in phases of ρ rounds. Let a phase where the master audits in all rounds
be called successful. The expected time for ρ consecutive audits is at most the expected time for
a successful phase. The probability of success in any given phase is at least (pminA)ρ. Consider the
probability distribution of the number X of phases needed to have success, each with probability
(pminA)ρ. This distribution is geometric and the expectation ofX is 1/(pminA)ρ. Given that each phase
has ρ rounds, the claim follows.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 11

The upper bound shown in Theorem 7 may be too pessimistic for certain values of the parameters.
The following theorem provides a tighter bound under certain conditions.

Theorem 8
Let us define, for each worker i, deci , αw min{WPC + ai,WBY −WCT − ai}, inci ,
αw max{WBY − ai,WCT + ai}. Let C be the set of covered workers. If pminA =
maxi∈C{inci/(inci + deci)}+ ε, for some 0 < ε < 1−maxi∈C{inci/(inci + deci)}, then
the expected convergence time is 1/(ε(mini∈C{deci}+ maxi∈C{inci})).

Proof
Let us define a potential function φ over the rounds as follows. Initially φ(0) = maxi∈C{p0Ci}. Then,
for each round r > 0, φ(r) = φ(r − 1) if φ(r − 1) = 0. If φ(r − 1) > 0, then φ(r) = max(0, φ(r −
1)−minj∈C{decj}) if the master audits in round r > 0, and φ(r) = φ(r − 1) + maxj∈C{incj}
otherwise.

Consider any worker i ∈ C, and observe that, in the extreme cases, pCi decreases by
minj∈C{decj} when the master audits and increases by maxj∈C{incj} when the master does not
audit. Also, once all workers in C have pCi = 0, this value does not change, since there is a majority
of honest workers. Hence, it is clear that for all r ≥ 0, φ(r) ≤ maxi∈C{prCi}.

As a worst case, assume that φ(0) = 1. We compute the expected number of rounds needed
to get φ = 0 as follows. We need 1/deci audits for each 1/inci non-audit rounds to compensate
for the increase in potential. Setting pminA = inci/(inci + deci) the master achieves at least that
ratio in expectation for any time period. (Omitting that time is discrete for clarity.) Additionally, in
order to compensate for the initial φ(0) = 1, 1/deci additional audits are needed. Making pminA =
inci/(inci + deci) + ε, for some 0 < ε < 1− inci/(inci + deci), the expected convergence time is
1/(ε(mini∈C{deci}+ maxi∈C{inci})).

The following corollary is derived from the previous theorem for a suitable scenario.

Corollary 9
If WPC + ai ≥WBY −WCT − ai and WBY − ai ≤WCT + ai, ∀i ∈ C, and if pminA =
WCT +maxi∈C ai

WBY
+ ε, where C is the set of covered workers and 0 < ε < 1− (WCT +

maxi∈C ai)/WBY , then the expected convergence time is ρ/ε, where ρ = 1/(αwWBY).

Probabilistic Bound on the Number of Rounds for Convergence: We show now that, under certain
conditions on the parameters of the system, it is possible to bound the probability to achieve
convergence and the number of rounds to do so. Assume that p0A > 0. Since pA is not changed
unless the master audits, we have the following:

Lemma 10
Let p0A = p > 0. Then, the master audits in the first ρ = ln(1/ε1)/p rounds with probability at least
1− ε1, for any ε1 ∈ (0, 1).

Proof
The master audits in the first ρ rounds with probability 1− (1− p)ρ ≥ 1− exp(−ρ · p) = 1−
ε1.

Let us assume that the system parameters are such that, for all workers i, αw(WPC + ai) ∈
[0, 1] and αw(WBY −WCT − ai) ∈ (0, 1] (all workers are covered). Let us define dec cheater ,
αw mini{WPC + ai} and dec honest , αw mini{WBY −WCT − ai}. From transitions (1) and
(2) we derive the following lemma:

Lemma 11
Let r be a round in which the master audits, and F be the set of cheaters in round r. Then,

prCi ≤ 1− αw(WPC + ai) ≤ 1− dec cheater, ∀i ∈ F

prCj ≤ 1− αw(WBY −WCT − aj) ≤ 1− dec honest,∀j /∈ F

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

Let us denote the sum of all cheating probabilities before a round r as P r−1 ,
∑
i

pr−1Ci .

Lemma 12
Let r be a round in which the master audits such that P r−1 > n/3. If dec cheater ≥ dec honest
and dec cheater + 3 · dec honest ≥ 8/3, then P r ≤ n/3 with probability at least 1− exp(−n/96).

Proof
Let F be the set of cheaters in round r. Then, using a Chernoff bound Pr[|F | < (1− δ)P r−1] ≤
exp(−δ2P r−1/2), for any δ ∈ (0, 1). Then, since P r−1 > n/3, using δ = 1/4, there are at least
(1− δ)P r−1 > n/4 cheaters with probability at least 1− exp(−δ2P r−1/2) > 1− exp(−n/96). If
that is the case, from Lemma 11 and dec cheater ≥ dec honest, we have that

P r ≤ n− |F |dec cheater − (n− |F |)dec honest ≤ n− (n/4)dec cheater − (3n/4)dec honest

= n(1− (dec cheater + 3 · dec honest)/4) ≤ n/3,

as desired.

Let us now define deci , αw min{ai,WBY −WCT − ai}. Let, dec , mini deci. Assume
WPC ≥ 0 and ai ≥ 0, for all workers.

Lemma 13
Consider a round r such that P r−1 ≤ n/3. Then, with probability at least 1− exp(−n/36) each
worker i has prCi ≤ max{0, pr−1Ci − dec}, and hence P r ≤ n/3.

Proof
Using Chernoff, there is a majority of honest workers with probability at least

Pr[majority honest|P r−1 ≤ n/3] ≥ 1− exp(−(1/2)2(n/3)/3) = 1− exp(−n/36).

It can be observed in Algorithm 2 that, if there is a majority of honest workers in a round r, then
any worker i has prCi ≤ max{0, pr−1Ci − dec}, independently of whether the master audits. Hence
the proof.

Theorem 14
Assume αw(WPC + ai) ∈ [0, 1] and αw(WBY −WCT − ai) ∈ (0, 1] for all workers
i. (Observe that all workers are covered.) Let dec cheater , αw mini{WPC + ai},
dec honest , αw mini{WBY −WCT − ai}, and dec , αw mini{ai,WBY −WCT − ai}.
If p0A = p > 0, dec cheater ≥ dec honest and dec cheater + 3 · dec honest ≥ 8/3, then
eventual convergence is reached in at most ln(1/ε1)/p+ 1/dec rounds, with probability at
least (1− ε1)(1− exp(−n/96))(1− exp(−n/36))1/dec, for any ε1 ∈ (0, 1).

Proof
Consider the first round r in which the masters audits. From Lemma 10, r is in the first ln(1/ε1)/p
rounds with probability at least 1− ε1. If so, either P r−1 ≤ n/3 and also P r ≤ n/3 (from Algorithm
2 and the fact that the master audits in round r, P cannot increase in round r), or P r−1 > n/3. In
this latter case, from Lemma 12, P r ≤ n/3 with probability at least 1− exp(−n/96). Then starting
at round r + 1, from Lemma 13, with probability at least (1− exp(−n/36))1/dec, there are 1/dec
consecutive rounds with majorities of honest workers. Since in each of these rounds the cheating
probability of any worker decreases at least by dec (unless it is already zero), at the end of these
rounds all workers have zero cheating probability.

5. SIMULATIONS
This section complements our analytical results with illustrative simulations. The graphical
representation of the data obtained captures the tradeoffs between reliability and cost, a concept
hard to view through the analysis. This is important as our analytical upper bounds on convergence
time correspond to worst case scenarios. Here, we present simulations for a variety of parameter

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(a) (b)

Figure 1. Cheating probability for each worker as a function of time (number of rounds) for parameters
pC = pA = 0.5, WBY = 1, WPC = 0, WCT = 0.1 and ai = 0.1. (a) α = 0.01; (b) α = 0.1.

combinations likely to occur in practice. We have created our own simulation setup by implementing
our mechanism (the master’s and the workers’ algorithms) using the C++ programming language.
We have run our simulations on a PC with an Intel Core 2 Duo, 2.80GHz CPU, 4GB of RAM
and Ubuntu 11.04 OS. Each depicted plot value represents the average over 10 executions of the
implementation. The plots of Figure 4 are an exception and the plotted values represent only 1
execution of the implementation; the purpose is to illustrate the per round cost of the master. We
have simulated several scenarios for different parameter values (here we present selected results).

Simulation parameters: We choose sensible parameter values likely to be encountered in real
applications; the choice of the parameters was influenced by statistics obtained from experiments
contacted in SETI-like projects ([21, 22, 51]). In particular, the number of workers has been set
to nine (an odd number to accommodate majority voting when the master does not audit). In
systems like Seti@home typically each task is assigned to three workers [34]. So, in that context,
nine workers seems an appropriate workforce. The initial cheating probability of each worker i is
not known, therefore we have experimented with pCi = 0.5, as a reasonable assumption, and with
pCi = 1 as an extreme case. Similarly, we have set pA ∈ {0.5, 1} as the master’s initial probability
of auditing. The minimum probability of cheating is set to be pminA = 0.01 and tolerance τ = 0.5,
which means that the master will not tolerate a majority of cheaters. Besides this intuition on the
value of tolerance, we also carried out a set of experiments to understand the effect of this parameter,
on which we will comment below.

The payoffs for the workers are set using WBY ∈ {1, 2} as our normalizing parameter and we
take WPC ∈ {0, 1, 2} and WCT = 0.1 as realistic values (within the same order of magnitude as
WBY) to explore the effects of these choices. The payoffs for the master are set to MCA = 20, a
large value allowing us to notice the impact of auditing, and we take MCY = WBY = 1. We have
set MBR = 0 and MPW = 0 to have a clear view of the master’s cost. In the simulations, unless
otherwise stated, the master covers all workers and not some majority as assumed in the analysis (as
a worst case scenario with respect to the master’s cost).

The aspiration is a parameter defined by the workers in an idiosyncratic manner; for simplicity,
in these simulations we consider all workers having the same aspiration level ai ∈ {0.01, 0.1}. We
have checked that, when values are assigned randomly around some mean, the results are similar to
those presented here, provided the variance is not very large. As for the values for the aspiration and
of the workers’ cost for computing the task WCT , they are such that the necessary conditions of
Theorem 6 are satisfied and hence eventual convergence is reached. Finally, we consider the same
learning rate for the master and the workers, i.e., α = αm = αw. For practical reasons [48] it must
be set to a small constant value, so we consider α ∈ {0.1, 0.01}.

Convergence time: Figure 1 shows that convergence can be reached very quickly, even without
punishing cheaters and with small WBY . Note that even if all workers have the same aspiration level
and begin with the same initial cheating probability, their evolution in time may be different from

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

pA

time

master

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 200 400 600 800 1000

pA

time

master

Figure 2. Auditing probability for the master as a function of time (number of rounds) for parameters
pC = pA = 0.5, WBY = 1, WPC = 0, WCT = 0.1 and ai = 0.1. Left: α = 0.01; Right: α = 0.1.

each other as it depends on the individual realizations of cheating. In Figure 1 we also notice that a
slightly higher value of α can make the convergence time shorter. (As we argued before, the value of
α can not be very high because the learning procedure will become unstable and pC will bounce up
and down without reaching convergence.) Similar conclusions can be drawn from Figure 2, where
we can notice how quickly pA drops to pA = 0.01, and also that pA decreases in the same manner
as pC . Notice however, that pA decreases at a slower rate; intuitively, this is to ensure that workers
will not try to deviate from the desirable behavior.
Effects of punishment: Notice that in previous simulations only a positive reinforcement is
applied to the workers (i.e., WPC = 0). Now, from Figure 3 we can notice that the larger the
punishment we apply (i.e., WPC ∈ {1, 2}) the faster the convergence time is. In fact, we may
conclude that applying only punishment is enough to have fast convergence. Comparing Figure 1(b)
with Figure 3(a) we observe that, for a specific set of parameter values, a larger WBY leads to a
shorter convergence time. Interestingly, this observation reveals a trade-off between convergence
time and the cost the master has for reaching faster convergence and maintaining it. Thus, the
master could choose between different protocols estimating the cost of the auditing until it reaches
convergence. But less auditing leads to larger convergence times. So it is not clear initially what is
going to be optimal.
Master’s cost: Recall from the simulation parameters that only the cost of auditing and the
workers’ payment are non-zero, and that the master covers all workers (instead of some majority
as in the analysis). We contrasted first a worst case scenario where workers initially cheat with
probability pC = 1, against the case where, given the lack of knowledge about worker’s behavior,
we assume that initially pC = pA = 0.5 (refer to Figure 2).

The first conclusion we can draw from our simulations is that, even in this unfavorable situation,
eventual convergence is still achieved. However, during the process the master’s auditing probability
reaches 1 for the system to converge. Of course, this has a direct impact on the cost of convergence,
but also on the convergence time. Denote by pA(0) the master’s initial auditing probability.
Interestingly, from Figures 4(a2), (a3), (b2), and (b3) we observe that, when pA(0) = 1, the
convergence time decreases by 9%, and that even pA converges to its minimum in 25% less time
yielding also a cost reduction. In fact, during the first 10 rounds of evolution, for pA(0) = 0.5 the
aggregate cost for the master is 56% smaller (Figure 4(a1)) than when pA(0) = 1 (Figure 4(b1)).
However, in the subsequent interval between pminA < pA < 1 the situation is reversed, and the
master’s cost for pA(0) = 1 is 19% smaller than the case pA(0) = 0.5. These results show that using
pA(0) = 1 does not necessarily increase cost as the intuition might suggest. After convergence is
achieved, Figures 4(a1), (b1), and (c1) show that, once the master’s auditing probability has reached
its minimum value, the master audits roughly once every hundred rounds, which is expected given
that pminA = 0.01. This behavior is observed independently of the initial auditing probability, which
is also expected.

Another surprising result, arising from Figures 4(b3) and (c3), is that having workers with larger
aspiration values makes the convergence time decrease by more than a half. The reason being that

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35 40

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20

pC

time

worker1
worker2
worker3
worker4
worker5
worker6
worker7
worker8
worker9

(c)
Figure 3. Cheating probability for each worker as a function of time (number of rounds) for parameters
pC = pA = 0.5, α = 0.1, ai = 0.1, WBY = 2 and WCT = 0.1. (a) WPC = 0; (b) WPC = 1; (c) WPC = 2.

the master initially audits with probability one and all workers cheat, so a larger aspiration causes
the workers’ cheating probability to drop at a higher rate. This, in turn, feeds back to the master’s
auditing probability and cost, making them decrease faster than the case where workers have a
smaller aspiration.

We have also examined the case where only a majority of workers is covered. Specifically, we
have run analogous simulations to the ones depicted in Figure 4, but now covering only 5 out of the
9 workers. A first, interesting observation, is that the convergence time for the covered workers is
not affected. An even more interesting observation is that the master’s cost, until pminA was reached,
is greater than the case of all-covered workers. This is due to the slower rate at which pA reaches
its minimum value. Of course, after this point, the master’s cost is smaller since it rewards fewer
workers.

Tolerance value: Finally, we have also considered the effect of tolerance for achieving eventual
convergence using three different initial pC ∈ {0.3, 0.5, 1}. Choosing 5000 iterations as a value
large enough to illustrate the problems of convergence for high tolerance (values of the same order
of magnitude or larger give basically the same results), we have found that convergence will always
be reached for the lower values of pC . This is due to the fact that with “almost” honest workers,
a majority of them will always compute the answer and will force punishment to the minority of
cheaters. However, when the initial pC equals one and there is no punishment (WPC = 0), the
master must respond to a percentage of cheating workers (due to tolerance) to obtain eventual
convergence, and as a consequence convergence is not achieved for large tolerance values (for this
specific set of parameters, when τ > 0.9). Interestingly, with non-zero punishment (WPC = 1), the
master can tolerate all workers cheating and still achieve convergence. Therefore, our simulated
examples establish that, based on the rest of the parameter values, the master can appropriately set
values for tolerance τ , (its own) learning rate α, punishment WPC and perhaps WBY in such a way
that convergence can be swiftly obtained.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

Fi
gu

re
4.

To
p

pa
ne

l,
m

as
te

r’
s

co
st

as
a

fu
nc

tio
n

of
tim

e.
M

id
dl

e
pa

ne
l,

m
as

te
r’

s
au

di
tin

g
pr

ob
ab

ili
ty

as
a

fu
nc

tio
n

of
tim

e.
B

ot
to

m
pa

ne
l,

w
or

ke
r’

s
ch

ea
tin

g
pr

ob
ab

ili
ty

as
a

fu
nc

tio
n

of
tim

e.
Pa

ra
m

et
er

s
in

al
lp

an
el

s,
p
C

=
1
,W

C
T

=
0
.1

,W
P
C

=
0

an
d
α

=
0
.1

.L
ef

tp
an

el
,p
A

=
0
.5

,a
i

=
0
.1

.M
id

dl
e

pa
ne

lp
A

=
1
,a
i

=
0
.1

.R
ig

ht
pa

ne
l

p
A

=
1
,a
i

=
0
.0

1
.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

RELIABILITY IN MASTER-WORKER COMPUTING 17

6. CONCLUSIONS AND FUTURE WORK

This work applies reinforcement learning techniques to capture the evolution of Internet-based
master-worker computations. We show that under necessary and sufficient conditions, the master
reaches a state after which the correct task result is obtained at each round, with minimal
cost. In addition, we show that such state can be reached ‘‘quickly’’. The convergence analysis
is complemented with simulations. Our simulation results suggest that when having a positive
reinforcement learning (i.e., WPC = 0) the master can reach fast convergence, while applying
punishments (i.e., WPC ∈ {1, 2}) provides even faster convergence. In fact, we may conclude that
applying only punishment is enough to have fast convergence. Also, our simulations demonstrated
that it is plausible, even if the master begins with an aggressive auditing strategy, to have a smaller
cost and convergence time compared to the case of using a less aggressive auditing policy.

The analysis has provided us with provable guarantees of our approach and the simulations give an
insightful view that is hard to detect from the analysis. In view of the potential of our approach, the
next logical step is to do real-world experiments which is the context of our future work. However,
such kind of experiment is non-trivial. We are currently in the stage of designing such real-world
experiments. We expect to obtain interesting results when comparing our current approach with
the observed behavior of real workers. In a follow up work, we additionally consider the presence
of malicious workers that always provide the master with an incorrect answer. This will provide
additional fault tolerance and security to the system.

Acknowledgments. We thank Carlos Diuk for useful discussions on reinforcement learning.

REFERENCES

1. I. Abraham, L. Alvisi, and J.Y. Halpern. Distributed computing meets game theory: Combining insights from two
fields. ACM SIGACT News: Distributed Computing Column, 42(2):69–76, 2011.

2. I. Abraham, D. Dolev, R. Goden, and J.Y. Halpern. Distributed computing meets game theory: Robust mechanisms
for rational secret sharing and multiparty computation. In proc. of PODC 2006, pp. 53–62.

3. BOINC Security, http://boinc.berkeley.edu/wiki/BOINC Security.
4. Amazon’s Mechanical Turk, https://www.mturk.com.
5. D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home: An experiment in public-resource

computing. Communications of the ACM, 45:56–61, 2002.
6. D. Anderson. BOINC: A system for public-resource computing and storage. In proc. of GRID 2004, pp. 4–10.
7. M. Babaioff, M. Feldman, and N. Nisan. Combinatorial agency. In proc. of ACM EC 2006, pp. 18–28.
8. M. Babaioff, M. Feldman, and N. Nisan. Free riding and free labor in combinatorial agency. In proc. of SAGT 2009.
9. M. Babaioff, M. Feldman, and N. Nisan. Mixed strategies in combinatorial agency. In proc. of WINE 2006, pp.

353–364.
10. J. Bendor, D. Mookherjee and D. Ray. Reinforcement learning in repeated interaction games. Advances in

Theoretical Economics, vol 1. (1), 2001.
11. J. Bendor, D. Mookherjee and D. Ray. Aspiration-based reinforcement learning in repeated interaction games: An

overview. International Game Theory Review, 3(2-3):159–174, 2001.
12. J. Bjornerstedt and J. Weibull. Nash equilibrium and evolution by imitation. The Rational Foundations of Economic

Behavior, 155–171, 1996.
13. T. Borgers and R. Sarin. Learning through reinforcement and replicator dynamics. Journal of Economic Theory,

77(1):1–14, 1997.
14. R. R. Bush and F. Mosteller. Stochastic Models for Learning, Wiley, 1955.
15. C. F. Camerer. Behavioral game theory: Experiments in strategic interaction. Roundtable Series in Behavioral

Economics, 2003.
16. V. Conitzer,T Sandholm. Incremental mechanism design. In Proc. IJCAI 2007.
17. G. Christodoulou and E. Koutsoupias. Mechanism design for scheduling. Bulletin of the EATCS, 97:39–59, 2009.
18. F. G. Cross. A theory of Adaptive Economic Behavior, Cambridge University Press, 1983.
19. D.Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected World,

Cambridge University Press, 2010.
20. R. Eidenbenz and S. Schmid. Combinatorial agency with audits. In proc. of GameNets 2009.
21. “Einstein@home”, http://einstein.phys.uwm.edu.
22. T. Estrada, M. Taufer, and D. P. Anderson. Performance prediction and analysis of BOINC projects: An empirical

study with EmBOINC. Journal of Grid Computing, 7(4):537–554, 2009.
23. A. Fernández, Ch. Georgiou, L. Lopez, and A. Santos. Reliably executing tasks in the presence of untrusted

processors. In proc. of SRDS 2006, pp. 39–50.
24. A. Fernández Anta, Ch. Georgiou, and M. A. Mosteiro. Designing mechanisms for reliable Internet-based

computing. In proc. of NCA 2008, pp. 315–324.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 E. CHRISTOFOROU, A. FERNÁNDEZ ANTA, C. GEORGIOU, M. A. MOSTEIRO, AND A. SÁNCHEZ

25. A. Fernández Anta, Ch. Georgiou, and M. A. Mosteiro. Algorithmic Mechanisms for Internet-based Master-Worker
Computing with Untrusted and Selfish Workers. In proc. of IPDPS 2010, pp. 1–11.

26. D. Fudenberg and D. K. Levine. The Theory of Learning in Games, MIT Press, 1999.
27. M. C. Gintis. Game Theory Evolving, Princeton University Press, 2000.
28. P. Golle and I. Mironov. Uncheatable distributed computations. In proc. of CT-RSA 2001, pp. 425–440.
29. J.Y. Halpern. Computer science and game theory: A brief survey. Palgrave Dictionary of Economics, 2007.
30. E.M. Heien, D.P. Anderson, and K. Hagihara. Computing low latency batches with unreliable workers in volunteer

computing environments. Journal of Grid Computing, 7:501–518, 2009.
31. J. Henrich and R. McElreath. The evolution of cultural evolution. Evolutionary Anthropology: Issues, News, and

Reviews 12.3, 2003 ,pp. 123–135.
32. L. R. Izquierdo and S. S. Izquierdo. Dynamics of the Bush-Mosteller learning algorithm in 2x2 games. Reinforcement

Learning: Theory and Applications, 2008.
33. K.M. Konwar, S. Rajasekaran, and A.A. Shvartsman. Robust network supercomputing with malicious processes. In

proc. of DISC 2006, pp. 474–488.
34. E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home: Massively distributed computing

for SETI. Computing in Science and Engineering, 3(1):78–83, 2001.
35. J. Laslier, R. Topol and B. Walliser. A behavioral learning process in games. Games and Economic Behavior, 37:340–

366, 2001.
36. A. Mass-Colell, M. Whinton, and J. Green. Microeconomic Theory, Oxford University Press, 1995.
37. J. Maynard-Smith. Evolution and the Theory of Games, Cambridge University Press, 1982.
38. J. Maynard-Smith and G. R. Price. The logic of animal conflict. Nature, 246:15–18, 1973.
39. J.F. Nash. Equilibrium points in n-person games. National Academy of Sciences, 36(1):48–49, 1950.
40. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35:166–196, 2001.
41. N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani, editors. Algorithmic Game Theory. Cambridge University

Press, 2007.
42. M. A. Nowak. Evolutionary Dynamics. Harvard University Press, 2006.
43. S. Phelps, P. McBurney and S. Parsons. Evolutionary mechanism design: A review. Journal of Autonomous Agents

and Multi-Agent Systems, 2010.
44. D. Rose, T. R. Willemain. The principal-agent problem with evolutionary learning. Computational and Mathematical

Organization Theory, 2:139–162, 1996.
45. L. Samuelson. Evolutionary Games and Equilibrium Selection, MIT Press, 1998.
46. L. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems. Future Generation Computer

Systems, 18(4):561–572, 2002.
47. J. Shneidman and D.C. Parkes. Rationality and self-interest in P2P networks. In Proc. of IPTPS 2003, pp. 139–148.
48. C. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine

Learning, Morgan & Claypool publishers, 2010.
49. M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks. Homogeneous redundancy: a technique to ensure integrity of

molecular simulation results using public computing. In proc. of IPDPS 2005.
50. J.W. Weibull. Evolutionary Game Theory, MIT Press, 1995.
51. “WUProp@home”, http://wuprop.boinc-af.org/.
52. M. Yurkewych, B.N. Levine, and A.L. Rosenberg. On the cost-ineffectiveness of redundancy in commercial P2P

computing. In proc. of CCS 2005, pp. 280–288.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

