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ABSTRACT

Network structure has often proven to be important in understanding the decision behavior of individuals or agents in different
interdependent situations. Computational studies predict that network structure has a crucial influence on behavior in iterated 2
by 2 asymmetric ‘battle of the sexes’ games. We test such behavioral predictions in an experiment with 240 human subjects.
We found that as expected the less ‘random’ the network structure, the better the experimental results are predictable by the
computational models. In particular, there is an effect of network clustering on the heterogeneity of convergence behavior
in the network. We also found that degree centrality and having an even degree are important predictors of the decision
behavior of the subjects in the experiment. We thus find empirical validation of predictions made by computational models in a
computerized experiment with human subjects.

Introduction

Coordination problems are numerous in everyday life1–3. While avoiding collusion in traffic, meeting one another or making
an exchange, coordination is a vital part of the success of the interaction. Coordination processes are therefore arguably
fundamental to understanding the functioning of social, economic and biological systems. Game theoretical models are often
used to model coordination problems with a strategic interdependence among actors. The success of this method has led to a
wide literature ranging from ‘two by two’ games to complex spatial multi-agent (network) models, and from theoretical studies
to experimental tests4–8. The coordination problem can be especially difficult when agents do not share the same preferences
for different options. These situations are often formalized by asymmetric coordination games, also known as the ‘battle of the
sexes’. Computational models9, 10 and other theoretical studies11, 12 show that network structure is an important predictor of
behavior in iterated asymmetric games. Although these models convincingly show that there are network effects on equilibrium
behavior, no empirical studies have been conducted to corroborate these findings. Previous research on network effects on other
types of games, such as the Prisoners Dilemma, show that the predictions made by computational models are not always evident
when tested empirically13. It is therefore crucial to test the predictions and assumptions made by these models. In this paper we
empirically test predictions made by computational and theoretical studies in an experimental study with human subjects9–12.

The problem with asymmetric coordination games is that it is difficult to make behavioral predictions about the outcome of
the game. Table 1 illustrates a ‘battle of the sexes’ game in which the two pure-strategy Nash equilibria are: both players play
α or both players choose β . However, the players differ in their preference for the equilibria. Therefore, the game consists of
an element of coordination and an element of competition between the players. There is also a mixed Nash equilibrium, but this
equilibrium is inefficient, because the expected payoff is lower for both players compared to any of the pure-strategy Nash
equilibria. Miscoordination is the most frequent outcome when human subjects play these one-shot games in an experimental
setting4, 6. Both players often choose the behavior according to their own preferred equilibrium, resulting in the lowest payoff
for both players. The players often converge to one of the two equilibria when the game is played repeatedly14–16. In rarer cases
players manage to switch simultaneously between the two equilibria, thereby obtaining the best outcome for both players14.

The situation can be made more complex by adding another player. This means there are three players who have to make a
decision between α and β , but again they differ in their payoff for choosing α or β . Although the complexity of the situation is



Table 1. Example payoff table asymmetric ‘battle of the sexes’ game, where the first entry is for player 1 and the second entry
for the player 2

Player 2 α β

Player 1 α 2,1 0,0
β 0,0 1,2

increased in terms of the number of players, it is easier to predict the outcome. The payoffs are balanced pairwise between
the players, but the global situation is not, because there will always be a majority for one of the options. Intuitively one can
already anticipate that when three people have to decide between two options, and two prefer option β and only one prefers α ,
the most likely outcome will be β . The three player situation is illustrated in Table 2, in which the payoffs are the sum of the
pairwise interactions of Table 1. Again there are two pure-strategy Nash equilibria: all players play α or all players play β .
However, in this case the equilibria are not equivalent and therefore not equally likely. The equilibrium ‘all players play β ’
yields a higher payoff for the two column players. Also, when the column players both play β , their payoff will at least be
two, independent of what player 1 does. When the column players both play α , their payoff will be two maximally. No such
coordination possibility exists for player 1 and 2 or 1 and 3. Assuming full information for all players, choosing β is the best
option for both column players. Because the row player is aware of this, the best reply would be to play β as well, making ‘all
players play β ’ the behavioral prediction in an empirical setting.

The situation changes again when players only interact with a subset of players in the game, instead of all other players. In
Figure 1 two situations with four players are illustrated. The nodes represent the players and the edges represent which nodes
interact with each other. There are two nodes which prefer α and two nodes which prefer β . In the network on the left of Figure
1 every node interacts only with nodes who have the opposite preference. Again the equilibria are: all players playing α or all
players playing β . The situation is completely balanced, therefore it is again hard to predict the outcome of the game. The
situation illustrated on the left of Figure 1 is the same as the situation on the right of Figure 1 with the exception that the edge
from the top left node to the top right node is replaced with an edge from the top left node to the bottom right node. Although
this is a minor change in the interaction structure, it is now easier to predict the outcome of this game. Both players with a
preference for β always have to interact with players with a different preference. However, both players with a preference
for α also interact with each other, making their pairwise interaction no longer an asymmetric battle of the sexes game, but a
symmetric coordination game. Therefore, choosing α yields the highest payoff for the pairwise interaction between these two
nodes. The node on the top right has no other choice than to coordinate on the same behavior as the node on the bottom right.
The node on the bottom left can therefore infer that the other players will choose α , making it the best response to also choose
α . So, ‘all players play α’ is the prediction in this situation.

In the 4-player situation one can still reason about what the predictions will be. In situations with more than 4 players it
rapidly becomes harder to reason about the behavioral outcome of a game and the situation becomes yet more complicated
when there are complex interaction structures added. In these types of situations, computational models are used to develop
predictions.

There are several computational studies exploring the behavior of multiple agents with asymmetric ‘battle of the sexes’ type
of dynamics. Several studies explore homogeneous spatial structures such as cellular automata17–19. An interesting finding
is the ability of self organization in agreement clusters in cellular automata. Clusters of adjacent nodes can coordinate on
one behavior while other parts of the cellular automata can coordinate on the other behavior. Hernández, Muñoz-Herrera and
Sánchez introduce a theoretical model for exploring Nash equilibria of battle of the sexes games on Erdös-Rényi networks
under the conditions of both complete and incomplete information12. They find a rich set of equilibria where both homogeneous
and heterogeneous equilibrium behavior is possible when players have complete information. This set is reduced when players

Table 2. Example payoff table 3 player asymmetric ‘battle of the sexes’ game. The first entry is for player 1, the second entry
for player 2, and the third entry for player 3.

Player 2 α β

Player 3 α β α β

Player 1 α 4,2,2 0,0,0 2,1,0 0,2,2
β 0,1,1 1,2,0 1,0,2 2,4,4
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Figure 1. Four-player games, represented as a network; α and β denote the preferences of the players.

have incomplete information. In a subsequent study, the influence of group size and the strength of preferences on equilibrium
behavior is studied11. The stronger the preferences, the harder it is to obtain homogeneous equilibrium behavior. Other related
work studies computationally the behavior of dynamic networks in which actors can make or break their links20. This study
identifies a set of networks that are stable, in the sense that actors no longer wish to break links or make new ones, often
resulting in segregated networks. In addition, some studies consider the influence of heterogeneity in other games such as
(weak) Prisoner’s Dilemma games21–23. An interesting result is that payoff heterogeneity is predicted to have a favorable effect
on cooperation. Furthermore, there are some experimental studies with human subjects testing the effects of network structure
on the number of rounds the participants need to reach coordination in both symmetric and asymmetric coordination games.
Findings indicate that network structure influences the pace at which participants coordinate and network density can help the
coordination process in asymmetry coordination games24. Other experimental studies show that with complete information on
choices made by all actors in the entire network, participants are quicker in reaching coordination compared to more limited
information sets25. However, these experimental studies do not study the effect of network structure on what the equilibrium
behavior will be.

All this research, based mostly on computational models, yields specific predictions about global behavior on complex
situations. However, obtaining those predictions often requires a lot of simplifying assumptions. The question then arises as to
how well do these models predict actual behavior given the assumptions they make and the complexity of the situation? This is
the main motivation for the experimental work we report in this paper.

Theory

In this study we empirically test behavioral predictions from previous computational9, 10 and theoretical studies11, 12; specifically,
we consider the influence of network structure on equilibrium behavior in iterated asymmetric ‘battle of the sexes’ games. We
focus on the computational model described in Broere et al.9. In this study nodes play iterated 2×2 games with their neighbors.
Each node gets a preference assigned before the first round of the game (say α or β ), that determines whether the node is a
row or a column player as shown in Table 2. Every round the nodes choose between α or β and the decision of the node is
played against all its neighboring nodes. In the first round, the nodes play their preferred behavior with probability one. After
every round, the nodes update their probability of playing α or β by means of reinforcement learning26, 27. The probability
of choosing either α or β is updated towards what would have been the best choice the previous round. Earlier research
investigated the response behavior of human subjects in iterated ‘battle of the sexes’ games in two types of ring networks28, 29.
This study found that 96 percent of the decisions of the subjects followed a myopic best response pattern. We therefore choose
a similar update rule. The update rule is more explicitly described in S1 of the Supplementary Materials.

The computational study compares the equilibrium behavior in three different types of networks9. The baseline model
is the Erdös-Rényi (ER) random network. This type of network is usually defined as G(N, per), where N is the number of
nodes in the network and per the probability of drawing an edge between two arbitrary nodes. Thus, for every two nodes in the
network the probability that an edge is present is the same. Depending on the choice of the parameters, this usually leads to
a network with low clustering and relatively low variation in the degree distribution. The computational study predicts that
equilibrium behavior is often homogeneous in these networks, in the sense that all nodes end up choosing the same behavior,
all α or all β . However, it is hard to predict which equilibrium the nodes will end up playing, mostly because this is dependent
on a complex combination of network characteristics. Both equilibria (all α or all β ) are generally equally likely. This situation
closely resembles the situations described in Table 1 and the left network of Figure 1.
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Table 3. Number of neighboring nodes required for a local majority given the degree of a node. Nodes with an even degree
always need 50%, while an uneven degree requires more than 50% of its neighbors.

Degree centrality 1 2 3 4 5 6 7 8
Number of neighboring nodes needed 1 1 2 2 3 3 4 4
Percentage of neighboring nodes needed 100% 50% 67% 50% 60% 50% 57% 50%

The second type of network studied in the computational study are clustered networks. The clustered networks are obtained
by means of the Watts-Strogatz algorithm30. The algorithm starts with a lattice consisting of N nodes. Each node is connected
with n neighboring nodes. The edges are rewired randomly with a constant probability for all edges. Using relatively low values
of the rewiring probability, the characteristic of these networks are short average path lengths and high clustering, known as the
‘small world’ network characteristics. The computational study predicts that equilibrium behavior is homogeneous within the
clusters, but heterogeneous between clusters, resulting in heterogeneous behavior in the overall network. Similar effects are
shown in an experiment with different (learning) dynamics31. This result is pretty intuitive when taking a closer look at the
definition of clustering. Clustering is often defined by the ratio of edges within a cluster and the edges outside the cluster32, 33.
The higher this average ratio, the higher the clustering of the network. In clustered networks coordinating on the same behavior
within the cluster is simply more rewarding because there are on average more edges within the community than outside. This
causes different communities to coordinate on different choices. A good predictor of the behavior within the cluster is the
preference of high degree nodes. The higher the degree of a node, the higher the probability that the node converges to its
preferred behavior.

The third type of network studied in the computational study are centralized networks. This type of network is constructed
using the preferential attachment algorithm proposed by Barabasi and Albert34. This algorithm starts with one or more nodes
and new nodes are added iteratively. In each iteration, the probability for a new node to connect to an existing node depends
on the number of links the existing nodes already have; the more links a node already has, the higher the probability that the
new node gets connected to it. This creates a ‘rich get richer’ effect. In the computational study, the centralized networks had
low-clustering, a few central nodes with high degree centrality and a majority of peripheral nodes with low degree centrality.
The equilibrium behavior in these networks is, just like random networks, often homogeneous in the sense that all nodes end
up choosing the same option: all α or all β . However, which equilibrium the nodes converge to is easily predicted by the
preference of the nodes with high degree centrality. In these networks the nodes with the highest degree centrality could dictate
the equilibrium behavior of the overall network. This situation closely resembles the situation of the right network in Figure 1.

Another effect which is present in all types of networks is related to an even degree centrality. Nodes with an even degree
centrality can relatively easily coordinate on their preferred behavior compared to nodes with a similar but uneven degree
centrality. This situation can be understood by reviewing the 3 player situation described in Table 2. When nodes have an even
degree, the total number of relevant choices is uneven, including the node itself. So locally there is always a majority for one
of the choices as described earlier in Table 2. Table 3 exemplifies the situation up to degree centrality eight. The percentage
of neighboring nodes that have to choose the same behavior for a local majority is always 50 percent for nodes with an even
degree centrality, while it requires more than 50 percent for nodes with an uneven degree centrality. This effect was also found
in symmetric coordination games in a computational study by Buskens and Snijders35.

Summarizing, computational studies predict homogeneous equilibrium behavior in random networks, while the predicted
probability is often close to 50 percent for either all α or all β . So, the information which can be derived from the network
is limited. The predicted equilibrium behavior in centralized networks is also homogeneous, but the equilibrium behavior
can be predicted by a few nodes with high degree centrality. In clustered networks degree centrality is also a good predictor
of behavior, but behavior is restricted to the community the node belongs to. Finally, nodes with an even degree centrality
more easily coordinate on their preferred behavior than nodes with an uneven degree centrality. Based on these computational
predictions, we will empirically test the following hypotheses:

Hypothesis 1:
The correlation of (equilibrium) behavior between the computational model and the empirical results will be higher for
centralized networks and clustered networks compared to random networks.

Hypothesis 2:
The equilibrium behavior is more heterogeneous in clustered networks compared to random and centralized networks.

Hypothesis 3:
Participants with high degree centrality will more often play their preferred behavior.

4/11



Table 4. Payoff table for the experiment

Player 2 Blue Yellow
Player 1 Blue 10,8 0,0

Yellow 0,0 8,10

Hypothesis 4:
Nodes with an even degree centrality more often play their preferred behavior than nodes with uneven degree centrality in all
networks.

Methods

Experimental setup
In order to test the four hypotheses we carried out a computerized laboratory experiment on networks of size 20. We used the
Python based software platform oTree36. The experiments where conducted both at Universidad Carlos III de Madrid, Spain
and Utrecht University, the Netherlands. In total 140 subjects participated in Madrid between April 9th and April 20th 2018.
These participants were invited from the IBSEN volunteer pool37. In addition, 100 subjects participated between May 22nd and
May 30th in the Experimental Laboratory for Sociology and Economics (ELSE), Utrecht. These participants were invited using
the ORSEE recruitment system38. In total we conducted 12 sessions with 20 participants. Therefore N=240 in total.

During the experiment, participants played an iterated asymmetric ‘battle of the sexes’ game against multiple other
participants at the same time. Every participant interacted with a subset of other players. Interactions are mapped on a network
in which the players are nodes and they play the game with the participants to whom they are connected. The payoff table is
shown in Table 4. The payoffs are chosen such that the difference between coordinating on the preferred option and the not
preferred option is a real difference, but small enough for participants to have incentive to deviate from their own preference.
Participants can choose between ‘blue’ and ‘yellow’ and play the same choice against all participants they interact with.

In this study we used three different networks, each to represent the characteristics of random networks, clustered networks
and centralized networks. The networks used in the experiments are represented in Figure 2 and the adjacency matrices can
be found in the supplementary materials S2, S3 and S4 of this paper. The network on the left in Figure 2 has low clustering
and low differentiation in degree centrality of the nodes. The network in the center of Figure 2 has high clustering and low
differentiation in degree centrality of the nodes. The network on the right in Figure 2 has low clustering and a few nodes with
high degree centrality. All networks have a network size of 20 nodes and a network density of 0.2. The network size is big
enough that it contains non-trivial complexity and small enough to make it experimentally feasible. The computational study
shows that the hypothesized outcomes can be expected for networks of size 20 and in a similar way for larger network sizes9.

Upon arrival participants were seated randomly in the laboratory. All subjects participated in games on all three networks.
Before the first round of each network, participants were assigned their ‘type’ at random. The type determined whether they
were the row or the column player in Table 4. The randomization was performed with the constraint of 10 row players and 10
column players to maximize the coordination problem. In every network, the participants played 20 rounds in which their type,
location in the network, and the participants they interacted with are the same. The order in which participants were placed on
each one of the networks was varied between sessions.

In each round participants had to decide between ‘blue’ and ‘yellow’. After all participants had made their decisions, they
where all informed about their payoff in that round and how many of the participants he/she is connected with played ‘blue’ or
’yellow’. The participant did not receive information about players in the network he or she was not connected with. Next, the
participants were asked to make a new decision for the next round, continuing for 20 rounds. We informed the participants
beforehand that they would play 20 rounds. We communicated the exact number of rounds because we did not expect any end
game effects. Before the actual rounds were played the participants were asked to read the instructions of the game. After
that, they were asked to answer questions about the instructions in order to test whether they understood the game. Before the
participants played on the actual networks, three practice rounds on a random network were played.

The experiments lasted an average of 45 minutes. The payoff of each round was accumulated and then divided by the number
of opponents (interaction partners in the network). For every 50 points earned, the participants received 1 euro. In addition, they
received 5 euros show up fee. The maximum that could be obtained was 17 euros. The average payoff was around 14 euros, the
lowest was 10.50 euros, the highest 16.50 euros. After the experiment, participants were asked to leave the room, after which
they were invited one by one to collect their earnings in privacy. The experiments in Spain were in Spanish and the experiments
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Figure 2. 20-player games, represented as a network. Left the random network, in the middle the clustered network, on the
right the centralized network.

in the Netherlands were in English. The instructions in both languages can be found in the supplementary materials S5 and S6
of this paper. The oTree code together with the obtained data and the R-scripts for the analyses can be found on the first authors
github page: https://github.com/JJBroere/An-experimental-study-of-network-effects-on-coordination-in-asymmetric-games.

Measures and analytical strategy
In order to test hypothesis 1, we have to calculate the correlation between the computational model and the empirical results.
The correlations are computed with the same starting conditions; the same network and preferences of the actors in the same
positions on the network. Given the same starting conditions, how often do the nodes in the computational model make the
same choice (blue or yellow) as the people in the experiment? Thus, the correlation of the behavior between the computational
graph gc and the behavior of the empirical graph ge for each graph is defined as:

r = cor(gc,ge) =
∑

N
i=1 ∑

R
t=1 f (xc

it ,x
e
it)

N×R
, (1)

where xit is the behavior (‘blue’ or ‘yellow’) of node i at round t, N is the number of nodes and R the number of rounds. The
function f (xc

it ,x
e
it) can have two values,

f (xc
it ,x

e
it) =

{
1 for xc

it = xe
it

−1 for xc
it 6= xe

it .

The computational model is run with the same initial conditions (distribution of types) as the empirical result. Because the
computational model has a stochastic update rule, we run the model 100 times and report the median correlation between the
model and the empirical result. We chose to report the median, because in some cases the distribution can be very skewed. For
the full specification of the computational model see S1 of the supplementary materials of this paper and Broere et al.9.

In order to test hypothesis 2 we resort to an analysis of variance (ANOVA) with post hoc tests on the heterogeneity of
behavior in the networks in the last 5 rounds. We chose to look at the last 5 rounds instead of just the last round because random
switching of behavior in the last rounds can influence the results. By taking the average of the last five rounds, the effects of
switching or possible end game effects will be minimized in the analyses. We define heterogeneity of behavior as the variance
of participants choosing ‘blue’ in the network:

h(pblue) = var(pblue) = pblue(1− pblue), (2)

where pblue is the proportion of nodes playing ‘blue’ in the last 5 rounds of the game.
We test hypotheses 3 and 4 by means of a multilevel logistic regression for all subject decisions over all 20 rounds. Three

levels are specified, taking into account the repeated measures of the participants and the correlation within networks. The
dependent variable is 1 when the participant plays its preferred behavior and 0 otherwise. The predictor variables are the degree
centrality of the participant in the network and the evenness of the degree.
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Table 5. Correlation between the computational model and the empirical results. The correlation is defined in the text. The
percentage correct is the percentage correctly predicted behavior of the experimental results by the computational model

All rounds Last five rounds
Correlation (sd) % correct (sd) Correlation (sd) % correct (sd)

Random 0.13 (0.09) 56 (4.61) 0.18 (0.16) 59 (8.29)
Clustered 0.44 (0.28) 72 (6.46) 0.51 (0.13) 76 (6.65)
Centralized 0.74 (0.17) 87 (8.74) 0.92 (0.25) 96 (12.48)
N 12 12 12 12

Results
In Table 5, the correlations between the empirical results and the computational model for each network are presented. We
investigate how well the computational model predicts both the empirical behavior in all 20 rounds and the convergence
behavior of the last five rounds. It is hard to define an objective convergence criterion, because participants sometimes switch
behavior in an equilibrium state, presumably trying to persuade their neighbors to switch as well. We therefore apply a more
subjective interpretation of convergence using as rule of thumb whether or not the switching of a player leads to switching
behavior for other players as well. According to this interpretation, convergence is reached in the last five rounds in all sessions
for the clustered network in Figure 2, and for the network with the central node in Figure 2. Not all sessions converged in the
random network in Figure 2. Six out of twelve networks did not fully converge in the last five rounds. This can occur because
the switching of behavior was still effective, inducing neighbors switching behavior as well, while in the other two networks it
rarely happened that switching behavior led to neighbors switching behavior as well. See S7, S8 and S9 of the supplementary
materials of this paper for a visual example of the behavior of the computational model compared to the experimental results.

The correlation between the empirical results and the computational model is r = 0.13,sd = 0.09 for random networks over
all 20 rounds and r = 0.18,sd = 0.16 for the last five rounds. The random network closely resembles the original two player
game in Table 1 or the situation on the left in Figure 1. In these situations different equilibria are equally likely. This is also
reflected in the current results where the computational model poorly predicts the empirical behavior. The correlation of the
clustered network is r = 0.44,sd = 0.28 and r = 0.51,sd = 0.13 for the last five rounds. This means that the model predicts 76
percent of the empirical observations correctly in the last five rounds. Predictions for these types of networks are significantly
better compared to the random network. Finally, for the centralized network, the median correlation is r = 0.74,sd = 0.17 in
all rounds and r = 0.92,sd = 0.25 for the last five rounds, meaning that towards the end behavior is predicted correct in almost
all cases: in fact, out of 12 sessions the behavior was predicted wrongly only twice. In these cases the empirical behavior
converged to the complete opposite direction from the predicted behavior, leading to a correlation of -0.98 and -1. This is
reflected in the standard error. However, 10 out of 12 times the empirical results are correctly predicted by the computational
model. Based on these results we found evidence in favor of hypothesis 1.

In order to test hypothesis 2, we examine heterogeneity of behavior in the last five rounds of the games for the different
networks. The mean variance in the random networks is, µ = 0.116,sd = 0.099, although six out of twelve networks have
not converged. The mean variance in the clustered networks is, µ = 0.183,sd = 0.085, corresponding to a situation in which
clustered networks converged most of the time to a state where around half of the participants choose ‘blue’ and the other
participants choose ‘yellow’. The mean variance in the networks with a central node is, µ = 0.024,sd = 0.030. This indicates
that these networks converge to homogeneous behavior where all participants choose ‘blue’ or all participants choose ‘yellow’
every time. An ANOVA was conducted to compare the effect of the networks on the heterogeneity in the last five rounds.
The ANOVA test yielded significant variation among conditions, F(2,33) = 12.6, p < 0.001. A post hoc Tukey test further
shows that the random networks and the clustered networks do not differ significantly at p = 0.101, although it should again be
noted that the random network often did not converge. The clustered networks and the networks with a central node differ
significantly at p < 0.001; the random network and the centralized network differ significantly at p = 0.019. Although the
difference between the clustered network and the random network is not evident, we do believe that the random networks that
did not converge yet would converge to the homogeneous state if more rounds where played. The random networks that did
converge, all converged to a (mostly) homogeneous state. Furthermore, we found a very clear difference between the random
network and the centralized network in terms of heterogeneity of behavior. We therefore conclude that we have empirical
evidence in favor of hypothesis 2.

In Table 6 the results of the multilevel logistic regression analyses are presented. The dependent variable is a dichotomous
variable indicating whether a participant chose the preferred behavior. The regression is conducted for all networks together,
and with the three networks separately. In the model with all networks together there is a positive statistical significant effect of
degree centrality on playing ones preferred behavior, β = 0.118,sd = 0.013, p < 0.001. The higher the degree centrality, the
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Table 6. Multilevel logistic regression results, dependent variable is 1 if the participant chose his or her preferred behavior, 0
otherwise.Three levels are specified, taking into account the repeated measures of the participants and the correlation within
networks.

All Networks Random Clustered Centralized

Degree centrality 0.118∗∗∗ (0.013) 0.185 (0.138) 0.280 (0.401) 0.210∗∗ (0.085)
Even degree 0.164∗∗∗ (0.060) −0.305 (0.473) 1.033∗∗ (0.476) −0.400 (0.500)
Constant 0.228∗ (0.136) 1.171∗ (0.638) −0.155 (1.638) 0.922∗ (0.493)

Random
Subject 1.913(1.383) 9.231(3.038) 9.635(3.104) 12.13(3.483)
Network 0.017(0.132)

Observations 14,400 4,800 4,800 4,800
logLik -7956.3 -1846.1 -1767.9 -1712.8

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

higher the probability that the participants will play their preferred behavior. There is also a positive statistically significant
effect of an even degree centrality, β = 0.164,sd = 0.060, p = 0.006. If a participant has an even degree centrality, the
probability that the participant will play his or her preferred behavior is higher as well. Looking at the random networks,
there is no statistically significant effect of any of the predictors. In the clustered network there is a statistically significant
effect of an even degree centrality, β = 1,033,sd = 0.476, p = 0.029. There is no statistical effect of degree centrality. In the
centralized network we do find a statistical significant effect of degree centrality, β = 0.210,sd = 0.085, p = 0.013. However
no statistically significant effect of having an even degree centrality. We found evidence in favor of hypothesis 3 and hypothesis
4 when combining all the data. However, the hypotheses could not be confirmed in the networks separately. This could be
caused by a lack of statistical power and variation in the degree distribution within some types of networks.

Conclusion and discussion
In this paper we empirically studied the effects of network structure on behavior in iterated ‘battle of the sexes’ games with
human subjects. The hypotheses were derived from computational models from previous studies. The empirical results
convincingly show that the computational models have empirical validity. The correlations between the computational
model and the empirical behavior indicates that network structure governs the behavior to some extent. As expected, as the
network structure becomes less ‘random’, the more accurate the computational model prediction of the behavior of the players.
Furthermore, we found evidence that the major network effects found in the computational study have a clear counterpart on
the behavior of the game when played with human subjects. Thus, in the clustered networks the equilibrium behavior was
clearly more heterogeneous compared to the centralized networks. In random networks we did not find a significant difference
with the clustered network. However, this could partially be explained because half of the sessions with the random networks
did not converge after 20 rounds and more homogeneity could still be expected. We also found evidence that degree centrality
and having an even degree plays a role in determining the behavior of the game.

Although the experiments were conducted in relatively small and simple networks, we do believe that the results are
generalizable to bigger and more complex network settings. As both the computational and the empirical results show, most of
the behavior is limited to the clusters of the network, and within each cluster our reasoning in terms of how majority influences
decision presented above seems to apply quite well. When a larger network consists of multiple clusters, the same behavior
can be expected within the clusters of the larger network. In larger networks with low clustering the same dynamics can be
expected as in smaller networks, however the relative influence of a single node on the equilibrium behavior naturally becomes
smaller as the number of nodes in the network becomes larger.

The small and limited number of networks studied is however a limitation of the current study. In this study we chose three
fixed networks to represent networks used in the computational study; namely an Erdös-Rényi random network, a small world
network and a preferential attachment network. There are several caveats to make about these choices. First of all, the networks
belong to a class of network defined by their mathematical properties. We did not study any variation between networks within
this class. The lack of variation within one network also makes it harder to detect the influence of different nodes. Secondly, the
mathematical properties of the networks are often limiting properties as the number of nodes goes to infinity: although the
effects are independent of size in the computational study, the networks in this study might in fact be too small to represent
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the limiting properties of the class of networks. However, studying larger and/or more different networks is complicated and
expensive in an experimental context with human subjects, because this would require very large sample sizes and also a large
amount of participant fee. The limiting factor is in the between network comparisons. In the current study it required 240
participants to be able to compare 12 networks per type.

All in all, our experiments show that the behavior of people trying to coordinate in a network can be understood reasonably
well in terms of local considerations. In other words, subjects react to what they observe around them, the rest of the network
does not seem to be relevant. This opens an interesting avenue of research as in other situations, different from the one
considered here, global information may be available that changes how people behave. Indeed, it was observed that when the
total number of people making one or the other choice is made available to the subjects, global coordination is reached much
more easily in a population of moving subjects39. In the case of networks, knowing that there are very many players choosing
the option one prefers may help to insist on making the decision that goes in one’s interest, in the hope that eventually one’s
neighbors might conform to the global majority. This, along with trying to extend our experiments to larger networks and to
more representatives of each class, would be an interesting contribution to establish the knowledge on coordination on networks
on firm grounds.
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