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Lattice model for kinetics and grain-size distribution in crystallization
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We propose a simple, versatile, and fast computational model to understand the deviations from the well-
known Kolmogorov-Johnson-Mehl-Avrami kinetic theory found in metal recrystallization and amorphous
semiconductor crystallization. Our model describes in detail the kinetics of the transformation and the grain
size distribution of the product material, and is in good agreement with the available experimental data. Other
morphological and kinetic features amenable of experimental observation are outlined, suggesting directions
for further validation of the model.

[. INTRODUCTION at high temperatures these boundaries move until they reach
a more favorable equilibrium configuratidm two dimen-
Mechanical, electronic, or magnetic properties of manysions, the equilibrium angles at a vertex are %20
polycrystallline materials depend not only on their chemical In the past few years, the belief that this picture is far too
composition, but also on the kinetic path of these materialsimple to properly describe nucleation-driven crystallization
toward the nonequilibrium state. Recently, the interest orhas progressively spread among the researchers in the field.
thin-film transistors made of polycrystalline Si and Si-GeThis is chiefly due to two problems: On the one hand, this
grown by low-pressure chemical vapor deposition has beetheory of nucleation and growth predicts an energy barrier
driven by the technological development of active matrixmuch larger than the experimental one, implying that nucle-
addressed flat-panel displdyand thin-film solar cellé.With  ation would be hardly probable at available annealing
these and similar applications in mind, the capability to entemperature3.0n the other hand, it is known that in crystal-
gineer the size and geometry of grains becomes crucial thzation of Si over SiQ substrates, nucleation develops in the
design materials with the required properties. Si/SiO, interface due to inhomogeneities or impurities that
In general, crystallization of most materials takes place bycatalyze the transformatidtiTherefore, a theory of homoge-
a nucleation and growth mechanismtucleation starts with neous nucleation and growth is not entirely applicable to the
the appearance of small atom clust@mbryo$. At a certain  referred experiments as well as to other examples reported in
fixed temperature, embryos with sizes greater than a criticahe literaturé’.
one become growing nuclei; otherwise, they shrink and In addition to the difficulties above, it is clear that the
eventually vanish. Such a critical radius arises from the comtransformation kinetics is also problematic. It is generally
petition between the surface tensign,and the difference in accepted that the fraction of transformed material during
free energy between the amorphous and crystalline phasesystallization,X(t), obeys the Kolmogorov-Johnson-Mehl-
Ag, that favors the increasing of grain volume, yielding anAvrami (KJIMA) model® according to which
energy barrier that has to be overcome to build up a critical
nucleus. For a circular grain of radiusthe free energy takes X(t)=1— exp(—at™), 2)
the simple form
wherea is a nucleation- and growth-rate dependent constant
AG=2mry—mr?Ag. (1)  andmis an exponent characteristic of the experimental con-
ditions. Two well-defined limits have been extensively dis-
The free energ\AG has a maximum, the energy barrier, cussed in the literature: When all the nuclei are present and
at the critical radius* = y/Ag. Subsequently, surviving nu- begin to grow at the beginning of the transformation, the
clei (r>r*) grow by incorporation of neighboring atoms, KIJMA exponentm, is equal to 2(in quasi-two-dimensional
yielding a moving boundary with temperature-dependent vegrowth like thin filmg, and the nucleation condition is
locity that gradually covers the untransformed phase. Growtermedsite saturation The product microstructure is tessel-
ing grains impinge upon each other, forming a grain boundiated by the so-called Voronoi polygorsr Wigner-Seitz
ary, and growth ceases perpendicularly to that boundarycells). On the contrary, when new nuclei appear at every step
Therefore, the structure consists of vertices connected bgf the transformationin=3 and the process is namedn-
edges(grain boundaries which surround the grains. The tinuous or homogeneous nucleatioPlots of log—log(1
number of edges joined to a given vertex is 3. In some cases; X)] against log) (called KIMA plots should then be

0163-1829/2000/610)/65798)/$15.00 PRB 61 6579 ©2000 The American Physical Society



6580 CASTRO, SNCHEZ, AND DOMINGUEZ-ADAME PRB 61

straight lines of slopen. Although in some cases, the KIMA following three rules and considering that initially all the
theory explains correctly the transformation kinetics, its gen-material is untransformed, i.a(x,0)= 0 for all lattice sites:
eral validity has been questioned in the last few y&afgnd An already transformed site remains at the same state for-
several papers have been devoted to understand this questiever.
in different ways:*~*3 However, there are still some open  An untransformegbotentialsite may become a new non-
guestions: An exponent between 2 and 3 is experimentallgxisting statdi.e., crystallizeswith probabilityn (nucleation
obtained(between 3 and 4 in three dimensiafishe KIMA  probability) if and only if there are no transformed nearest
plots from experimental data do not fit to a straight line inneighbors around it.
some casesand, finally, the connection between geometri-  An untransformed sitdincluding potential sitestrans-
cal propertieggrain size distributionsand the KIMA expo- forms into an already existing transformed state with prob-
nent is not clear. ability g (growth probability if and only if there is at least

In this paper we report on a detailed investigation of aone transformed site of that type on its neighborhood. The
probabilistic lattice model, which relates in a clear-cut waynew state is randomly chosen among the neighboring grain
the mentioned problems to the inhomogeneities in thestates, if there are more than one.
sample, i.e., the fact that heterogeneous nucleation takes Note that we have termeglasgrowth probabilityand not
place. Indeed, heterogeneous nucleation is rather common growth rate The actual growth rate is a nontrivial function
nature due to impurities or substrate cavities resulting fronf(g), because whemy<1 the grains grow with a rough
roughness, among others. Within our model, the connectioboundary. For the model parameters, we expect a functional
between such heterogeneous nucleation and the deviatioferm n~e~En’*sT andf(g) ~e~Fu’*sT, whereE, andE are
from the simplest nucleation picture become evident. Furthe energy barriers for nucleation and for growth, respec-
thermore, as we will see below, our model predicts measurtively (see below. Hence, temperature is implicit in the
able quantities, such as the grain size distribution or thenodel parameters. We discuss these relationships in depth in
KJIMA exponent, which are in good agreement with the ex-the next subsections.
periments. Our paper is organized according to the following
scheme: in Sec. Il we introduce our model and discuss in
depth the relationship between its defining parameters and
physical ones. Section 1l collects the results of an extensive AS we mentioned above, the crystalline fraction is ap-
simulation program, which establishes the main features dproximately given by Eq(2), with some exponerh depend-
the model. Finally, Sec. IV discusses the connection betweelfd on the dimensionality and type of nucleation. Experimen-
our model and experiments, and concludes the paper by surally, the crystalline fraction is measured from the intensity

marizing our main findings and collecting some prospect®f the peaks of x-ray diffraction of the microstructure as
and open questions. material transforms from the amorphous to the polycrystal-

line phase. In the following, we will assume that there is not
any preferential directioff that is,n is the same for all po-
tential sites, and) is the same for all grains.

A. Evolution rules The other experimentally measurable magnitude is the
grain size distributionP(A), defined as the fraction of grains

Our model is based in some previous ideas by &ath . ; T :
and Beck® and its key proposal is that the material is not With a given area. To compare with simulation results, we
' will usually plot the normalized distribution of reduced area

perfectly homogeneous but, on the contrary, it contains re- — —
gions with some extra enerdyegions with some order pro- A’ =A/A, whereA is the mean area:
duced during deposition or substrate impurities which
nucleation is more probable. Our aim in this section is to
provide a detailed description of our modklrgely expand-
ing the preliminary, short report presented earlier in Ref, 17
and how the basic idea mentioned above is implemented ifhis distribution changes dramatically with nucleation
it. conditions'® Some of the available experimental data are
The model is defined on a two-dimensional lattisguare  given in terms of the distribution of grain diameterd).
and triangular lattices were employed with essentially similaras we will demonstrate below, this distribution is equivalent
resultg with periodic boundary conditions; generalizations g the distribution ofeffective diamete¢A/ )22 (or simply
can straightforwardly be done to any spatial dimension. Ina2) which is computationally less expensive to calculate.

the beginning (=0), every lattice sit¢or node x belongsto  Hence, we will present our results in terms of the effective
a certain grain or state. We represent the situatior BY  diameter.

q(x,t)=0,1,2 ..., the state 0 being that of an untrans-
formed region. The lattice spacing is therefore the experi-
mental resolution, usually greater thafi. Following the
idea that the amorphous phase has random regions at which To begin with, let us show that the potential sites, distrib-
nucleation is favored, we choose a fractiorof the total  uted randomly throughout the system, define a characteristic
lattice sites and label those able to nucleate We term  length given by the probability distribution of nearest neigh-
these energetically favorable sitpstentialnuclei. bors. Suppose we havd randomly potential sites in &
Simulation proceeds in discrete time steps of duration XL system. The mean concentration of potential sites is
The system evolves by parallel updating according to the= N/L2. We may ask about the probability of finding a num-

B. Physically relevant magnitudes

Il. THE MODEL

A= f wAP(A)dA. (3)
0

C. Time and length scales
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FIG. 1. Individual grains grown on a square lattice for different  FIG. 2. Individual grains grown on a triangular lattice for dif-

growth probabilities. ferent growth probabilitieg.
berk=N of these sites in a region of ar@aThis probability The characteristic time scale arising from the concentra-
is given by the binomial distribution: tion of nucleation sites is not the only one: Indeed, the nucle-

ation probability defines another characteristic time. Being

N more specific, the number of sites that have nucleated per
PN,A) = | | pX1—p)N K, (4)  unit time is proportional to the available ones
wherep=A/L%. dN(t) _ _
Taking the limitL—o, N—o, while keepingN/L?=c, dt =N[NmaN(D],

the expressiori4) tends to the Poisson probability distribu-
tion, whereN,,=cL2. Thus, we have

(Ac)® _Ac _ _amnt —(]—ea-nt 0

P (A)= e Ac, (5) N()=Npa(l—e M)=p(t)=c(l—e™ ™), (10

k!

If, as stated above, we suppose that the system is isotropie(t) Peing the concentration of already nucleated potential

circle of radiusr as nucleation timet,=1/n. As we will see below, the competi-
tion between time scales characterizes the final microstruc-
(mr?c) 2 ture.
P (r): e—wr C (6) . . .
k KI . In a general case, some potential sites will be covered by

other growing grains and therefore their nucleation is inhib-
So, if Eq.(6) is the probability of findingn potential sites in  ited. The mean distance of the potential sites that become
a disc of radius, then the probability of finding no grains is actual grains is, replacingby p(t) in Eqg. (8),

Po(r)=€ ™", w 1 1
and the probability of finding at least one neighbor at a dis- dm(t)= W: ct1—e My’ (12)

tance less thanis 1—Py(r). This is precisely the probabil-
ity distribution of nearest neighbors. In other words, we can

obtain the probability density of finding at least one neighbor T tn<to, almost every potential site nucleates before
betweerr andr +dr as follows: grains impinge upon each other. We term this situafast

nucleation and in terms of our model parameters it means

d ) thatn>c'/2 This situation is similar to site saturation nucle-
p(r)dr=a(l—Po(r))dr=2mce‘W dr. (8)  ation, in which every potential site nucleatestat0. The

KJIMA exponent will be close to 2 and the grain size distri-

The first moment of the distribution is the mean distancebution will be similar to that of site saturation. Note that,

among potential sites whenn=1, the exact limit is obtained for every concentra-
tion c<1, but concentrations close to 1 yield a mean grain
d, = fxrp(r)dr=c*1’2. 9 size of just a few times the critical radius;, which in fact
0 has not much to do with the experimentally measured values.

In this caset, is approximately equal to the simulation time
On the other hand, the grains grow with constant velocity step, 7, so the characteristic time scalesigg~t,~c~ /2

For definiteness, let us take the growth probabijty be 1; Analogously, ift,>t, then c¥>>n and growing grains
we will see below that the results of simulations for otherwill overlap potential sites before these have nucleated, forc-
values ofg can be reproduced from simulations wijl 1 ing the number of nucleating grains to decrease with time.
conveniently rescaled. With this choice, the grain radiusAs new grains still appear at every stage of the transforma-
grows according to the law(t)=Qt, where() is a geo- tion, we expect approximately homogeneous nucleation, and
metrical coefficient that depends on the underlying latticecorrespondingly a KIMA exponent close to 3. We term this
Thus, we may define the mean time at which the growingsituationslow nucleation Comparing the radii of the grains
grains will impinge, oroverlap time, asQt,=c Y2 or, in  with the mean distance among them we find the characteris-
general, i.e., ignoring the details of the latticg;-c~ 2 tic time of the process:



6582 CASTRO, SNCHEZ, AND DOMINGUEZ-ADAME PRB 61

2 2

a) b) 10 > Rl
4

1
S 10

™k
10" L 3 L s 10°

10° 100 10" 100 107 107

FIG. 3. Boundaries between two individual grains obtained from C n

simulations withg=0.5 on a triangular lattice(a) both grains
nucleate at the same time, aflg) they nucleate at different times,
yielding a curved interface.

FIG. 5. log-log plot of the characteristic timg,: (a) (O)
Simulation value, solid line is a power-law fits with slope0.32
+0.01; (b) Symbols stand for simulation, solid lines are power
fittings: (O) ¢=0.005, slope: 0.3#0.02; ) ¢=0.01, slope:

1 1 0.34+0.01; (¢) ¢=0.05, slope: 0.320.01; and {\) ¢=0.1,

= lope: 0.310.02.
Cl/z[ 1- eXF( —n Tslow)] (CnTsIow) 12 siope

Q Tgoms grains grow simultaneously, as in this case the grain geom-
etry is determined by the succesive impingement with its
and hence neighbors.
In connection with the last remark, it is interesting to
1 consider another issue related to boundaries, namely that of
Tsloww(cn—)l,g- (12 poundaries between different grains. bgtandr, be the
radii of two circular grains; their boundary is then defined by
The important point, however, is the fact that between bottthe equatiof?
limits we will find a wide range of KIMA exponents and
grain size distributions, consistently with the experimental Nituvgli=ratugty, (13
results.

~T(Tsion) =

whereuv is the growth velocity and, , the elapsed time
since each grain nucleated. When grains started to grow at
ll. NUMERICAL RESULTS AND DISCUSSION the same timetg=t,), the boundary is a straight line. Oth-
erwise, it is a hyperbola. In Fig. 3 we plot two examples of
interfaces in which, in spite of the fact that interfaces are

An isolated grain, i.e., a grain completely surrounded bynoisy, both characteristic curves are revealed.
untransformed material, grows isotropically. Thus, in a con-

tinuum medium, the grain boundary is nearly a circumfer-
ence. Nevertheless, the shape of such propagating interfaces
in our model depends strongly on the underlying lattice. For We have simulated 10001000 triangular and square lat-
example, in the limit casg=1, a grain growing in a square tices and averaged the outcome of 50 different realizations
lattice is square shaped, whereas if growing in a triangulafor each choice of parameter&haracteristic simulation
lattice it is hexagonal shaped. As the growth probability times are about 15 to 45 minutes in a Pentium Il personal
diminishes, the underlying lattice effects seem to vanish, angomputej. The crystalline fraction ranges from 0 to 1, so we
grains are approximately circular, with a rough boundary. Indefine the typical simulatioior experimental time as the
Figs. 1 and 2 we show the dependence of the grain shape dime t,,, at whichX(t,,;)=1/2. As a check on our ideas, we
the growth probability, varyingy from 0.1 to 1, on square have begun by verifying the dependence of this parameter on
and triangular lattices respectively. We see thatder0.4  the time scales defined above. In Figs. 4 and 5, we tpjpt

the shape of an isolated growing grain becomes practicallfor different parameters in the fast and slow nucleation lim-
independent of the lattice, whereas for larger valueg, ¢iie  its. A very good agreement is observed with the expected
grain shape exhibits the influence of the lattice geometry. Ibehavior ofty,~ 7,g andty;,~ 74, discussed in Sec. 11 C.

is important to note that this does not occur when many

A. Isolated grain shapes

B. Kinetics
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FIG. 4. log-log plot of the characteristic timg,, vs c in the FIG. 6. Transient KIMA exponent vs ldy(Circles:n=1 and

fast nucleation limit over a square latticeD] Simulation; solid ¢=0.001; squaresa=0.5 andc=0.005; diamondsn=0.1 andc
line: power-law fit with slope-0.50+0.01. =0.05 and trianglesn=0.01 andc=0.1. g=1 in all cases.
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FIG. 9. Grain reduced area distributiorD) Simulation with
FIG. 7. KIMA exponent dependence on the concentration probn=1, g=1, andc=0.001; ) simulation withn=0.001,g=1,
ability c on a 1000 1000 triangular lattice. From top to bottom: andc=0.5. Solid line: exact value from E{L5); dashed line: from

n=0.001,n=0.01,n=0.03,n=0.07, andn=1. Eq. (16).

Therefore, we can be confident that the expectations drawn C. Grain area and grain diameter

above about the behavior of the model, based on theoretical |n order to further check the model results, we have to
considerations, will be fulfilled. compare the grain size distributions with some well-accepted

The first key feature to analyze relates to the crystallizatheoretical ones. Although these distributions are obtained
tion kinetics as seen through KIJMA p|OtS. Our results ShOV\phenomeno]ogica”y, the agreement with experiments and
that those are not the straight lines predicted by the KIMAsimulations is very good. Under some assumptions about the
model: This can be best seen by looking at the transieninean number of neighbors of a nucleation center, Weaire

KJIMA exponent, defined as et al. proposed a simple distribution for site saturaffon
d P(A")=(A")* ta%exd — aA']IT(a), (15)
m(t)= ————{log[ — log(1—X)]}. (14) _
d(|09t){ 9.~ log I wherea=3.65, andA’ =A/A is the reduced area. In Fig. 9

we plot the normalized grain size distributidaircles for
Figure 6 shows that the KIMA exponent always decreasegifferent parameters for whiam=2, i.e., site saturation, and
from its initial value to an asymptotic, time-independent onejcompare it with Eq(15) (solid line).
correspondingly and in agreement with the experiments, Similarly, in the case of homogeneous nucleation, a
KJIMA plots approach straight lines only at late times. Wesimple (but not so accurajeexpression has been propo¥ed
note that, in determining(t), care has to be taken from the
computational point of view as in some cases the number of P(A")=exd —A"]. (16)

steps needed to complete the transformation is too short. In

addition, it is necessary to remove the last few instants of th&Ur model shows some slight deviations from this equation,
time evolution, as they exhibit large finite size effects. The®S S€€n in Fig. 9. Interestingly, these are the same as in other

. . 1 . o e .
asymptotic value is the one we take from simulations and th&del simulation$} and, in addition, we have to keep in

one plotted in Fig. 7 showing the dependence of the KJMAMInd the applicability limitations of Eq(16 21 Therefore,

exponent with the potential site concentrationAlterna- W€ believe that the behavior displayed by our model is also
tively, Fig. 8 depicts the dependence of KIMA exponent orfully satisfactory in this limit. o .

the nucleation probability. We thus see that there is a large  Onceé we have checked the validity of the model in the
variability of the KIMA exponent, covering all the range Well-known limits, we report on the influence of the nucle-
between 2 and 3 in this two-dimensional case, that dependion probability,n, and the potential site concentratianpn
on the relationship between the nucleation probabilitie., ~ the grain size distribution. In Fig. 10 we plot several grain
the nucleation rajeand the concentration of nucleation sites Size distributions when we pick both parameters along a line

c. This result is a step beyond KIMA theory, and agrees wittgoing from the slow to the fa;t n'uclefation limit. In so doing,
the fact that experiments offer very different results, withWe cross from an extended distribution to a stretched one, as

exponents between 2 and 3. we would expect in view of Eqg15) and (16).

3.0 L 2) b)
28 I T-
26 < M\
g & ol d
24 1
2.0
00 02 04 06 08 10 A’

FIG. 10. Grain reduced area distribution. Simulation with:
FIG. 8. KIMA exponent dependence on the nucleation probabiln=0.01 andc=0.1; (b) n=0.1 andc=0.05; (c) n=0.5 andc
ity n on a 1000 1000 triangular lattice: ©@) ¢=0.001; (O) c =0.005 and(d) n=1 andc=0.001.g=1 in all cases. Horizontal
=0.005; (¢) ¢=0.01; (A) ¢c=0.05; and &) c=0.1. axis ranges from 0 to 4 and vertical axes from 0 to 1 in four graphs.
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FIG. 11. Mean area vs inverse of the potential site concentra-

. : . T i . FIG. 13. Collapse of the grain effective diameter normalized
tion. (O) Simulation values. Dashed line is a linear fit.

distributions for eighg values ranging from 0.05 to 1.

Let us now turn to the issue of the mean grain size. As weyerify whether the effective diameter distribution is the same
have pointed out, in the fast nucleation limit the characterisas the real diameter distribution, which is computationally
tic length scale is related to the mean potential site distancenuch more demanding, we have compared them in several
¢~ Y2 In this case, we expect the mean grain diameter to beases. The comparison is shown in Fig. 14, by plotting the
proportional to that scale. In Fig. 11 we show this linearreferred normalized distributions. The correlation between
dependence of the mean areacort. On the contrary, inthe both sets of points is greater than 99.9%, allowing us to
slow nucleation limit, when the concentratioris relatively  conclude that the reports above in terms of areas carries over
large, the grains grow on affectivehomogeneous medium. to the mean diameter picture without significant changes.
Roughly speaking, the mean distance among potential sites is
so small that the grain radii is very soon larger than this
distance. Thus, the characteristic length sadlés that of the
grains when they impinge upon each other. As the grain Some theoretical approaches to equilibrium crystallized
radius grows linearly with time, we expedt-t,,, so A2 confizglurations_ deal with the mean number of neighbors,
~(cn)~ 3 and KN(Cn)—z/g. Figure 12 confirms that this N, or equwal_ently, considering the final product_as a
simple analysis is very accurate. polygon tessellation of space, _the_mean.number o_f sides of

Finally, there are two questions we announced in Sec. I}hose polygons. If the material is divided in equal size hexa-

whose validation has been left postponed. We now addre ons, this distribution i®(Nyr) = 8(Nns—6). In Fig. 15 we

these points, beginning by that of the effect of the paramete’? ot the_ numerical distribution of nea_rest neighbors for site
g, which so far we have restricted tp=1. For every value saturation and homogeneous nucleation. The asymmetry and

of g the growth ratef(g), defines a characteristic time re- the variance of the mean number of neighbors are the main

lated to the temporal scale at which the grains spread on th ffferences in both limits. The inset in Fig. 15 shows the

amorphous substrate. Thus, we expect that by rescaling gjaean number of neighbors and the corresponding changes in
simulation time step-—.>f(g)7: (with £(g)— ), asg—1, O variance for different parameters. Clearly, the distribution

being the geometrical coefficient introduced in Sec.)lltGe sp_reads out and loses Its symmetry in homogeneous n_ucle-
mean grain size will depend only on the ratitf(g). We ation. Fu_rthermore, computing the mean number_of _nelgh—
have not been able to obtain an analytical expression fol?ors against the nucleation time for all of the grains in the
f(g) but we can calculate it numerically for the requirgd sgmple we find that thgounggrgrams hgve Ie;s number of
by growing an isolated grain. In Fig. 13 we show the eXCeI_SIdes than theolder ones, which explains this asymmetry.

. . ; o Hence, this distribution can be another element of compari-
lent collapse of different effective diameter distributions for : . :
. . son with experiments. We remark that secondary crystalliza-
several couples n,g) with constantn/f(g). This result

shows that the outcome of the simulations reported here f flon (or abnormal grain growthis due to these deviations

g=1 truly represents, except for a factor, the model charac(:)trrom the ideal configuration.

teristics for other values di.
The other pending question is related to the mean grain

diameter. So far, we have discussed our results in terms of To conclude our analysis of heterogenous nucleation, we
the mean grain area or the mean effective diameter size. Tesent some results of the influence of temperature in prod-

D. Mean number of neighbors

E. Temperature and applicability of the model

10* 10° 1.5
a) N b)
h\\ El 102 1_0
I« 10" | =
“n 1
% g 10 05 |
{1 P — Lt 10’
10° 107 10" 10" 107 10”7 107 10° 0.0 &
c n o 3

FIG. 12. log-log plot of the mean areA: (a) (O) Simulation
value; solid line: power-law fit with slope-0.66+0.01; (b) (1)
simulation, dashed line: power-law fit with slope0.67+0.02.

FIG. 14. Numerical comparison between normalized distribu-
tions of reduced grain diametefO(, d’, and reduced effective

diameter, A')Y2 (O).
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FIG. 16. Self-consistency of Eq19) with c=1 (homogeneous
nucleation. (O) Simulation; solid line: exponential fit which gives
an activation energyE,=2(E,—E4)/3=1.26+0.01, consistent
with E,=5.1 eV andE,=3.2 eV.

FIG. 15. Nearest-neighbor number normalized distributi@) (
n=1, c=0.001(site saturatiop ((J) n=0.01 andc=0.1 (homo-
geneous nucleatigninset: Mean number of neighbois,,, and its
variance, o,,, with: () n=0.01 andc=0.1; (b) n=0.1 andc
uct properties. In addition, this will allow us to show thatthe ~As we have seen, the model proposed in this paper pro-
model gives consistent results when realistic parameters aMdes very accurate and detailed spatial and temporal infor-
chosen to reproduce an actual material. The mean grain ar&@tion about the system evolution: Crystalline fraction,
in homogeneous nucleation of two-dimensional disks ignean grain area, KIMA exponent, or mean number of neigh-
given by the simple relatioft! bors. The main features observed in experiments, such as

noninteger KIMA exponents or different types of grain size

— [Go\?R distributions are very well reproduced by the model. We
A~(N—> , (17) must conclude, then, that the model captures all the physical

0 ingredients involved in the crystallization process: In particu-
where N, and G, are the nucleation and growth rates, re-lar, it points out to the inhomogeneity of the nucleation phe-
spectively. IdentifyingN, with n andG,, with f(g), we have nomenon(which can arise because of the structure of the
obtained similar resultésee Sec. Ill ¢. As nucleation and @morphous material itself, or because of defects at the
growth are activated processes, we postulate an Arrheniu§Hbstrate-material interface, for instanes the key feature
like dependence of nucleation and growth probabilites; ~ 9overning the crystallization kinetics and the resulting grain
textures. In view of this, we propose this model, very unex-
pensive in terms of computing time, as a versatile way to
incorporate other physical ingredients as boundary migra-
In homogeneous nucleation, as we have reported, we cdion, preferential grain growth or diffusion-controlled
redefinen andg to setg=1; hence, the temperature is intro- growth, which will be the aim of further work. Finally, from
duced in our model by means of the nucleation probability the experimental perspective, it has to be mentioned that the
model should be able to explain and predict some results.
Predictions can be made by means rof, controlled by
changing the annealing temperat@see Sec. Il i, andc by
andg=1. ion implantation of nucleation centers, or by some induced

As an example, if we want to model nondendritic Si crys-impurities or defects on the sample substrate. Some ordered
tallization, we may use the experimental activationdistributions of defects can be induced by ion implantation
energie¥? E,=5.1 eV and Eq=3.2 eV. Then, A with an appropriate mask, which can be trivially introduced
~ exdEu/ksT], where from Eq.(17) E,=2(E,—Eg)/3 Inour model. These ideas call for further experimental work
~1.27 eV. In Fig. 16 we plot the mean grain size vs 1g00/ N order to confirm the validity of our model.

The slope giveg,=1.26+0.01 eV, which is consistent with
the introduced values. Thus, the model provides a simple

tool to analyze crystallization experiments: Setting the acti- This work was supported by CANMadrid, Spain under
vation energies as the program input, we just have to chooseroject No. 07N/0034/98 and by DGESISpain under

a realistic value ohy (e.g., in terms of the final number of Project No. PB96-0119. The authors wish to thank T. Rod-
graing and tune the degree of heterogeneitigsn order to  riguez, A. Rodguez, J. Olivares, and C. Ballesteros for
compare with the experiments. simulating dicussions on experimental issues.

n~exd —E,/kgT], f(g)~exd —Eg/kgT]. (18)

n—n'=n/f(g)=ngexd —(E,—Eg)/kgT], (19
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