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Lattice model for kinetics and grain-size distribution in crystallization
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We propose a simple, versatile, and fast computational model to understand the deviations from the well-
known Kolmogorov-Johnson-Mehl-Avrami kinetic theory found in metal recrystallization and amorphous
semiconductor crystallization. Our model describes in detail the kinetics of the transformation and the grain
size distribution of the product material, and is in good agreement with the available experimental data. Other
morphological and kinetic features amenable of experimental observation are outlined, suggesting directions
for further validation of the model.
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I. INTRODUCTION

Mechanical, electronic, or magnetic properties of ma
polycrystallline materials depend not only on their chemi
composition, but also on the kinetic path of these mater
toward the nonequilibrium state. Recently, the interest
thin-film transistors made of polycrystalline Si and Si-G
grown by low-pressure chemical vapor deposition has b
driven by the technological development of active mat
addressed flat-panel displays1 and thin-film solar cells.2 With
these and similar applications in mind, the capability to e
gineer the size and geometry of grains becomes crucia
design materials with the required properties.

In general, crystallization of most materials takes place
a nucleation and growth mechanism:3 Nucleation starts with
the appearance of small atom clusters~embryos!. At a certain
fixed temperature, embryos with sizes greater than a crit
one become growing nuclei; otherwise, they shrink a
eventually vanish. Such a critical radius arises from the co
petition between the surface tension,g, and the difference in
free energy between the amorphous and crystalline pha
Dg, that favors the increasing of grain volume, yielding
energy barrier that has to be overcome to build up a crit
nucleus. For a circular grain of radiusr, the free energy take
the simple form

DG52prg2pr 2Dg. ~1!

The free energyDG has a maximum, the energy barrie
at the critical radiusr * 5g/Dg. Subsequently, surviving nu
clei (r .r * ) grow by incorporation of neighboring atom
yielding a moving boundary with temperature-dependent
locity that gradually covers the untransformed phase. Gr
ing grains impinge upon each other, forming a grain bou
ary, and growth ceases perpendicularly to that bound
Therefore, the structure consists of vertices connected
edges~grain boundaries!, which surround the grains. Th
number of edges joined to a given vertex is 3. In some ca
PRB 610163-1829/2000/61~10!/6579~8!/$15.00
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at high temperatures these boundaries move until they re
a more favorable equilibrium configuration~in two dimen-
sions, the equilibrium angles at a vertex are 120o).4

In the past few years, the belief that this picture is far t
simple to properly describe nucleation-driven crystallizati
has progressively spread among the researchers in the
This is chiefly due to two problems: On the one hand, t
theory of nucleation and growth predicts an energy bar
much larger than the experimental one, implying that nuc
ation would be hardly probable at available anneal
temperatures.5 On the other hand, it is known that in crysta
lization of Si over SiO2 substrates, nucleation develops in t
Si/SiO2 interface due to inhomogeneities or impurities th
catalyze the transformation.6 Therefore, a theory of homoge
neous nucleation and growth is not entirely applicable to
referred experiments as well as to other examples reporte
the literature.7

In addition to the difficulties above, it is clear that th
transformation kinetics is also problematic. It is genera
accepted that the fraction of transformed material dur
crystallization,X(t), obeys the Kolmogorov-Johnson-Meh
Avrami ~KJMA! model,8 according to which

X~ t !512 exp~2atm!, ~2!

wherea is a nucleation- and growth-rate dependent cons
andm is an exponent characteristic of the experimental c
ditions. Two well-defined limits have been extensively d
cussed in the literature: When all the nuclei are present
begin to grow at the beginning of the transformation, t
KJMA exponent,m, is equal to 2~in quasi-two-dimensiona
growth like thin films!, and the nucleation condition i
termedsite saturation. The product microstructure is tesse
lated by the so-called Voronoi polygons~or Wigner-Seitz
cells!. On the contrary, when new nuclei appear at every s
of the transformation,m53 and the process is namedcon-
tinuous or homogeneous nucleation. Plots of log@2log(1
2X)# against log(t) ~called KJMA plots! should then be
6579 ©2000 The American Physical Society
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straight lines of slopem. Although in some cases, the KJM
theory explains correctly the transformation kinetics, its g
eral validity has been questioned in the last few years,9,10 and
several papers have been devoted to understand this que
in different ways.11–13 However, there are still some ope
questions: An exponent between 2 and 3 is experiment
obtained~between 3 and 4 in three dimensions!;7 the KJMA
plots from experimental data do not fit to a straight line
some cases;7 and, finally, the connection between geome
cal properties~grain size distributions! and the KJMA expo-
nent is not clear.

In this paper we report on a detailed investigation o
probabilistic lattice model, which relates in a clear-cut w
the mentioned problems to the inhomogeneities in
sample, i.e., the fact that heterogeneous nucleation t
place. Indeed, heterogeneous nucleation is rather commo
nature due to impurities or substrate cavities resulting fr
roughness, among others. Within our model, the connec
between such heterogeneous nucleation and the devia
from the simplest nucleation picture become evident. F
thermore, as we will see below, our model predicts mea
able quantities, such as the grain size distribution or
KJMA exponent, which are in good agreement with the e
periments. Our paper is organized according to the follow
scheme: in Sec. II we introduce our model and discuss
depth the relationship between its defining parameters
physical ones. Section III collects the results of an extens
simulation program, which establishes the main features
the model. Finally, Sec. IV discusses the connection betw
our model and experiments, and concludes the paper by s
marizing our main findings and collecting some prospe
and open questions.

II. THE MODEL

A. Evolution rules

Our model is based in some previous ideas by Cahn14,15

and Beck,16 and its key proposal is that the material is n
perfectly homogeneous but, on the contrary, it contains
gions with some extra energy~regions with some order pro
duced during deposition or substrate impurities! at which
nucleation is more probable. Our aim in this section is
provide a detailed description of our model~largely expand-
ing the preliminary, short report presented earlier in Ref. 1!,
and how the basic idea mentioned above is implemente
it.

The model is defined on a two-dimensional lattice~square
and triangular lattices were employed with essentially sim
results! with periodic boundary conditions; generalizatio
can straightforwardly be done to any spatial dimension.
the beginning (t50), every lattice site~or node! x belongs to
a certain grain or state. We represent the situation atx by
q(x,t)50,1,2, . . . , the state 0 being that of an untran
formed region. The lattice spacing is therefore the exp
mental resolution, usually greater thanr * . Following the
idea that the amorphous phase has random regions at w
nucleation is favored, we choose a fractionc of the total
lattice sites and label those asable to nucleate. We term
these energetically favorable sitespotentialnuclei.

Simulation proceeds in discrete time steps of durationt.
The system evolves by parallel updating according to
-
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following three rules and considering that initially all th
material is untransformed, i.e.,q(x,0)50 for all lattice sites:

An already transformed site remains at the same state
ever.

An untransformedpotentialsite may become a new non
existing state~i.e., crystallizes! with probabilityn ~nucleation
probability! if and only if there are no transformed neare
neighbors around it.

An untransformed site~including potential sites! trans-
forms into an already existing transformed state with pro
ability g ~growth probability! if and only if there is at least
one transformed site of that type on its neighborhood. T
new state is randomly chosen among the neighboring g
states, if there are more than one.

Note that we have termedg asgrowth probabilityand not
growth rate. The actual growth rate is a nontrivial functio
f (g), because wheng,1 the grains grow with a rough
boundary. For the model parameters, we expect a functio
form n;e2En /kBT and f (g);e2Eg /kBT, whereEn andEg are
the energy barriers for nucleation and for growth, resp
tively ~see below!. Hence, temperature is implicit in th
model parameters. We discuss these relationships in dep
the next subsections.

B. Physically relevant magnitudes

As we mentioned above, the crystalline fraction is a
proximately given by Eq.~2!, with some exponentm depend-
ing on the dimensionality and type of nucleation. Experime
tally, the crystalline fraction is measured from the intens
of the peaks of x-ray diffraction of the microstructure
material transforms from the amorphous to the polycrys
line phase. In the following, we will assume that there is n
any preferential direction,18 that is,n is the same for all po-
tential sites, andg is the same for all grains.

The other experimentally measurable magnitude is
grain size distribution,P(A), defined as the fraction of grain
with a given areaA. To compare with simulation results, w
will usually plot the normalized distribution of reduced ar
A85A/Ā, whereĀ is the mean area:

Ā5E
0

`

AP~A!dA. ~3!

This distribution changes dramatically with nucleatio
conditions.19 Some of the available experimental data a
given in terms of the distribution of grain diameters,P(d).
As we will demonstrate below, this distribution is equivale
to the distribution ofeffective diameter(A/p)1/2 ~or simply
A1/2), which is computationally less expensive to calcula
Hence, we will present our results in terms of the effect
diameter.

C. Time and length scales

To begin with, let us show that the potential sites, distr
uted randomly throughout the system, define a character
length given by the probability distribution of nearest neig
bors. Suppose we haveN randomly potential sites in aL
3L system. The mean concentration of potential sites ic
5N/L2. We may ask about the probability of finding a num
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berk<N of these sites in a region of areaA. This probability
is given by the binomial distribution:

Pk~N,A!5S N

k D pk~12p!N2k, ~4!

wherep5A/L2.
Taking the limit L→`, N→`, while keepingN/L2[c,

the expression~4! tends to the Poisson probability distribu
tion,

Pk~A!5
~Ac!k

k!
e2Ac. ~5!

If, as stated above, we suppose that the system is isotro
we may write the probability of findingk potential sites in a
circle of radiusr as

Pk~r !5
~pr 2c!k

k!
e2pr 2c. ~6!

So, if Eq.~6! is the probability of findingn potential sites in
a disc of radiusr, then the probability of finding no grains i

P0~r !5e2pr 2c, ~7!

and the probability of finding at least one neighbor at a d
tance less thanr is 12P0(r ). This is precisely the probabil
ity distribution of nearest neighbors. In other words, we c
obtain the probability density of finding at least one neighb
betweenr and r 1dr as follows:

p~r !dr5
d

dr
„12P0~r !…dr52prce2pcr2

dr. ~8!

The first moment of the distribution is the mean distan
among potential sites

dm5E
0

`

rp~r !dr5c21/2. ~9!

On the other hand, the grains grow with constant veloc
For definiteness, let us take the growth probabilityg to be 1;
we will see below that the results of simulations for oth
values ofg can be reproduced from simulations withg51
conveniently rescaled. With this choice, the grain rad
grows according to the lawr (t)5Vt, where V is a geo-
metrical coefficient that depends on the underlying latti
Thus, we may define the mean time at which the grow
grains will impinge, oroverlap time, asVto5c21/2 or, in
general, i.e., ignoring the details of the lattice,to;c21/2.

FIG. 1. Individual grains grown on a square lattice for differe
growth probabilitiesg.
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The characteristic time scale arising from the concen
tion of nucleation sites is not the only one: Indeed, the nuc
ation probability defines another characteristic time. Be
more specific, the number of sites that have nucleated
unit time is proportional to the available ones

dN~ t !

dt
5n@Nmax2N~ t !#,

whereNmax5cL2. Thus, we have

N~ t !5Nmax~12e2nt!⇒r~ t !5c~12e2nt!, ~10!

r(t) being the concentration of already nucleated poten
sites at timet. In view of this, we define the characterist
nucleation timetn51/n. As we will see below, the competi
tion between time scales characterizes the final microst
ture.

In a general case, some potential sites will be covered
other growing grains and therefore their nucleation is inh
ited. The mean distance of the potential sites that beco
actual grains is, replacingc by r(t) in Eq. ~8!,

dm~ t !5
1

Ar~ t !
5

1

c1/2~12e2nt!
. ~11!

If tn!to , almost every potential site nucleates befo
grains impinge upon each other. We term this situationfast
nucleation, and in terms of our model parameters it mea
thatn@c1/2. This situation is similar to site saturation nucl
ation, in which every potential site nucleates att50. The
KJMA exponent will be close to 2 and the grain size dist
bution will be similar to that of site saturation. Note tha
whenn51, the exact limit is obtained for every concentr
tion c,1, but concentrationsc close to 1 yield a mean grain
size of just a few times the critical radius,r * , which in fact
has not much to do with the experimentally measured valu
In this case,tn is approximately equal to the simulation tim
step,t, so the characteristic time scale ist fast;to;c21/2.

Analogously, if tn@to then c1/2@n and growing grains
will overlap potential sites before these have nucleated, fo
ing the number of nucleating grains to decrease with tim
As new grains still appear at every stage of the transform
tion, we expect approximately homogeneous nucleation,
correspondingly a KJMA exponent close to 3. We term t
situationslow nucleation. Comparing the radii of the grain
with the mean distance among them we find the characte
tic time of the process:

t FIG. 2. Individual grains grown on a triangular lattice for di
ferent growth probabilitiesg.
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1

c1/2@12 exp~2ntslow!#
.

1

~cntslow!1/2

;r ~tslow!5Vtslow,

and hence

tslow;
1

~cn!1/3
. ~12!

The important point, however, is the fact that between b
limits we will find a wide range of KJMA exponents an
grain size distributions, consistently with the experimen
results.

III. NUMERICAL RESULTS AND DISCUSSION

A. Isolated grain shapes

An isolated grain, i.e., a grain completely surrounded
untransformed material, grows isotropically. Thus, in a co
tinuum medium, the grain boundary is nearly a circumf
ence. Nevertheless, the shape of such propagating inter
in our model depends strongly on the underlying lattice. F
example, in the limit caseg51, a grain growing in a squar
lattice is square shaped, whereas if growing in a triangu
lattice it is hexagonal shaped. As the growth probabilityg
diminishes, the underlying lattice effects seem to vanish,
grains are approximately circular, with a rough boundary.
Figs. 1 and 2 we show the dependence of the grain shap
the growth probability, varyingg from 0.1 to 1, on square
and triangular lattices respectively. We see that forg&0.4
the shape of an isolated growing grain becomes practic
independent of the lattice, whereas for larger values ofg, the
grain shape exhibits the influence of the lattice geometry
is important to note that this does not occur when ma

FIG. 3. Boundaries between two individual grains obtained fr
simulations with g50.5 on a triangular lattice:~a! both grains
nucleate at the same time, and~b! they nucleate at different times
yielding a curved interface.

FIG. 4. log2log plot of the characteristic timet1/2 vs c in the
fast nucleation limit over a square lattice: (s) Simulation; solid
line: power-law fit with slope20.5060.01.
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grains grow simultaneously, as in this case the grain ge
etry is determined by the succesive impingement with
neighbors.

In connection with the last remark, it is interesting
consider another issue related to boundaries, namely tha
boundaries between different grains. Letr 1 and r 2 be the
radii of two circular grains; their boundary is then defined
the equation19

r 11vgt15r 21vgt2 , ~13!

where vg is the growth velocity andt1,2 the elapsed time
since each grain nucleated. When grains started to grow
the same time (t15t2), the boundary is a straight line. Oth
erwise, it is a hyperbola. In Fig. 3 we plot two examples
interfaces in which, in spite of the fact that interfaces a
noisy, both characteristic curves are revealed.

B. Kinetics

We have simulated 100031000 triangular and square la
tices and averaged the outcome of 50 different realizati
for each choice of parameters~characteristic simulation
times are about 15 to 45 minutes in a Pentium II perso
computer!. The crystalline fraction ranges from 0 to 1, so w
define the typical simulation~or experimental! time as the
time t1/2 at whichX(t1/2)51/2. As a check on our ideas, w
have begun by verifying the dependence of this paramete
the time scales defined above. In Figs. 4 and 5, we plott1/2
for different parameters in the fast and slow nucleation li
its. A very good agreement is observed with the expec
behavior oft1/2;t fast and t1/2;tslow discussed in Sec. II C

FIG. 5. log2log plot of the characteristic timet1/2: ~a! (s)
Simulation value, solid line is a power-law fits with slope20.32
60.01; ~b! Symbols stand for simulation, solid lines are pow
fittings: (s) c50.005, slope: 0.3460.02; (h) c50.01, slope:
0.3460.01; (L) c50.05, slope: 0.3260.01; and (n) c50.1,
slope: 0.3160.02.

FIG. 6. Transient KJMA exponent vs log(t). Circles:n51 and
c50.001; squares:n50.5 andc50.005; diamonds:n50.1 andc
50.05 and triangles:n50.01 andc50.1. g51 in all cases.
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Therefore, we can be confident that the expectations dr
above about the behavior of the model, based on theore
considerations, will be fulfilled.

The first key feature to analyze relates to the crystalli
tion kinetics as seen through KJMA plots. Our results sh
that those are not the straight lines predicted by the KJ
model: This can be best seen by looking at the trans
KJMA exponent, defined as

m~ t !5
d

d~ log t !
$ log@2 log~12X!#%. ~14!

Figure 6 shows that the KJMA exponent always decrea
from its initial value to an asymptotic, time-independent on
correspondingly and in agreement with the experime
KJMA plots approach straight lines only at late times. W
note that, in determiningm(t), care has to be taken from th
computational point of view as in some cases the numbe
steps needed to complete the transformation is too shor
addition, it is necessary to remove the last few instants of
time evolution, as they exhibit large finite size effects. T
asymptotic value is the one we take from simulations and
one plotted in Fig. 7 showing the dependence of the KJM
exponent with the potential site concentrationc. Alterna-
tively, Fig. 8 depicts the dependence of KJMA exponent
the nucleation probabilityn. We thus see that there is a larg
variability of the KJMA exponent, covering all the rang
between 2 and 3 in this two-dimensional case, that depe
on the relationship between the nucleation probabilityn ~i.e.,
the nucleation rate! and the concentration of nucleation sit
c. This result is a step beyond KJMA theory, and agrees w
the fact that experiments offer very different results, w
exponents between 2 and 3.

FIG. 7. KJMA exponent dependence on the concentration p
ability c on a 100031000 triangular lattice. From top to bottom
n50.001,n50.01, n50.03, n50.07, andn51.

FIG. 8. KJMA exponent dependence on the nucleation proba
ity n on a 100031000 triangular lattice: (s) c50.001; (h) c
50.005; (L) c50.01; (n) c50.05; and (v) c50.1.
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C. Grain area and grain diameter

In order to further check the model results, we have
compare the grain size distributions with some well-accep
theoretical ones. Although these distributions are obtai
phenomenologically, the agreement with experiments
simulations is very good. Under some assumptions about
mean number of neighbors of a nucleation center, We
et al. proposed a simple distribution for site saturation20

P~A8!5~A8!a21aa exp@2aA8#/G~a!, ~15!

wherea.3.65, andA85A/Ā is the reduced area. In Fig.
we plot the normalized grain size distribution~circles! for
different parameters for whichm.2, i.e., site saturation, and
compare it with Eq.~15! ~solid line!.

Similarly, in the case of homogeneous nucleation,
simple ~but not so accurate! expression has been proposed21

P~A8!5 exp@2A8#. ~16!

Our model shows some slight deviations from this equati
as seen in Fig. 9. Interestingly, these are the same as in o
model simulations,21 and, in addition, we have to keep i
mind the applicability limitations of Eq.~16!.21 Therefore,
we believe that the behavior displayed by our model is a
fully satisfactory in this limit.

Once we have checked the validity of the model in t
well-known limits, we report on the influence of the nucl
ation probability,n, and the potential site concentration,c, on
the grain size distribution. In Fig. 10 we plot several gra
size distributions when we pick both parameters along a
going from the slow to the fast nucleation limit. In so doin
we cross from an extended distribution to a stretched one
we would expect in view of Eqs.~15! and ~16!.

b-

il-

FIG. 9. Grain reduced area distribution: (s) Simulation with
n51, g51, andc50.001; (h) simulation withn50.001, g51,
andc50.5. Solid line: exact value from Eq.~15!; dashed line: from
Eq. ~16!.

FIG. 10. Grain reduced area distribution. Simulation with:~a!
n50.01 andc50.1; ~b! n50.1 and c50.05; ~c! n50.5 and c
50.005 and~d! n51 andc50.001. g51 in all cases. Horizontal
axis ranges from 0 to 4 and vertical axes from 0 to 1 in four grap



w
ris
nc

b
a

.
es
hi

a

.
re
et

-
t
t

f

el
or

f
a

ra
s
.

me
lly
eral
the
en
to

over
.

ed
rs,
a

s of
xa-

ite
and
ain

he
es in
on
cle-

gh-
he
f
y.
ari-
iza-
s

we
rod-

ed

u-

tr
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Let us now turn to the issue of the mean grain size. As
have pointed out, in the fast nucleation limit the characte
tic length scale is related to the mean potential site dista
c21/2: In this case, we expect the mean grain diameter to
proportional to that scale. In Fig. 11 we show this line
dependence of the mean area onc21. On the contrary, in the
slow nucleation limit, when the concentrationc is relatively
large, the grains grow on aneffectivehomogeneous medium
Roughly speaking, the mean distance among potential sit
so small that the grain radii is very soon larger than t
distance. Thus, the characteristic length scale,d, is that of the
grains when they impinge upon each other. As the gr
radius grows linearly with time, we expectd;t1/2, so Ā1/2

;(cn)21/3 and Ā;(cn)22/3. Figure 12 confirms that this
simple analysis is very accurate.

Finally, there are two questions we announced in Sec
whose validation has been left postponed. We now add
these points, beginning by that of the effect of the param
g, which so far we have restricted tog51. For every value
of g, the growth rate,f (g), defines a characteristic time re
lated to the temporal scale at which the grains spread on
amorphous substrate. Thus, we expect that by rescaling
simulation time stept→ f (g)t „with f (g)→V, asg→1, V
being the geometrical coefficient introduced in Sec. II C…, the
mean grain size will depend only on the ration/ f (g). We
have not been able to obtain an analytical expression
f (g) but we can calculate it numerically for the requiredg,
by growing an isolated grain. In Fig. 13 we show the exc
lent collapse of different effective diameter distributions f
several couples (n,g) with constant n/ f (g). This result
shows that the outcome of the simulations reported here
g51 truly represents, except for a factor, the model char
teristics for other values ofg.

The other pending question is related to the mean g
diameter. So far, we have discussed our results in term
the mean grain area or the mean effective diameter size

FIG. 12. log2log plot of the mean areaĀ: ~a! (s) Simulation
value; solid line: power-law fit with slope20.6660.01; ~b! (h)
simulation, dashed line: power-law fit with slope20.6760.02.

FIG. 11. Mean area vs inverse of the potential site concen
tion. (s) Simulation values. Dashed line is a linear fit.
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verify whether the effective diameter distribution is the sa
as the real diameter distribution, which is computationa
much more demanding, we have compared them in sev
cases. The comparison is shown in Fig. 14, by plotting
referred normalized distributions. The correlation betwe
both sets of points is greater than 99.9%, allowing us
conclude that the reports above in terms of areas carries
to the mean diameter picture without significant changes

D. Mean number of neighbors

Some theoretical approaches to equilibrium crystalliz
configurations deal with the mean number of neighbo
Nnn ,21 or equivalently, considering the final product as
polygon tessellation of space, the mean number of side
those polygons. If the material is divided in equal size he
gons, this distribution isP(Nnn)5d(Nnn26). In Fig. 15 we
plot the numerical distribution of nearest neighbors for s
saturation and homogeneous nucleation. The asymmetry
the variance of the mean number of neighbors are the m
differences in both limits. The inset in Fig. 15 shows t
mean number of neighbors and the corresponding chang
variance for different parameters. Clearly, the distributi
spreads out and loses its symmetry in homogeneous nu
ation. Furthermore, computing the mean number of nei
bors against the nucleation time for all of the grains in t
sample we find that theyoungergrains have less number o
sides than theolder ones, which explains this asymmetr
Hence, this distribution can be another element of comp
son with experiments. We remark that secondary crystall
tion ~or abnormal grain growth! is due to these deviation
from the ideal configuration.

E. Temperature and applicability of the model

To conclude our analysis of heterogenous nucleation,
present some results of the influence of temperature in p

FIG. 13. Collapse of the grain effective diameter normaliz
distributions for eightg values ranging from 0.05 to 1.

FIG. 14. Numerical comparison between normalized distrib
tions of reduced grain diameter (s), d8, and reduced effective
diameter, (A8)1/2 (h).
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uct properties. In addition, this will allow us to show that t
model gives consistent results when realistic parameters
chosen to reproduce an actual material. The mean grain
in homogeneous nucleation of two-dimensional disks
given by the simple relation:19

Ā;S G0

N0
D 2/3

, ~17!

where N0 and G0 are the nucleation and growth rates, r
spectively. IdentifyingN0 with n andG0 with f (g), we have
obtained similar results~see Sec. III C!. As nucleation and
growth are activated processes, we postulate an Arrhen
like dependence of nucleation and growth probabilities:

n; exp@2En /kBT#, f ~g!; exp@2Eg /kBT#. ~18!

In homogeneous nucleation, as we have reported, we
redefinen andg to setg51; hence, the temperature is intro
duced in our model by means of the nucleation probabili

n→n85n/ f ~g!5n08 exp@2~En2Eg!/kBT#, ~19!

andg51.
As an example, if we want to model nondendritic Si cry

tallization, we may use the experimental activati
energies:22 En55.1 eV and Eg53.2 eV. Then, Ā
; exp@Ea /kBT#, where from Eq. ~17! Ea52(En2Eg)/3
.1.27 eV. In Fig. 16 we plot the mean grain size vs 1000T.
The slope givesEa51.2660.01 eV, which is consistent with
the introduced values. Thus, the model provides a sim
tool to analyze crystallization experiments: Setting the a
vation energies as the program input, we just have to cho
a realistic value ofn08 ~e.g., in terms of the final number o
grains! and tune the degree of heterogeneities,c, in order to
compare with the experiments.

FIG. 15. Nearest-neighbor number normalized distribution. (s)
n51, c50.001 ~site saturation!; (h) n50.01 andc50.1 ~homo-
geneous nucleation!. Inset: Mean number of neighbors,Nnn , and its
variance,snn with: ~a! n50.01 andc50.1; ~b! n50.1 and c
50.05; ~c! n50.5 andc50.005; and~d! n51 andc50.001.
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IV. CONCLUSIONS

As we have seen, the model proposed in this paper p
vides very accurate and detailed spatial and temporal inf
mation about the system evolution: Crystalline fractio
mean grain area, KJMA exponent, or mean number of nei
bors. The main features observed in experiments, such
noninteger KJMA exponents or different types of grain si
distributions are very well reproduced by the model. W
must conclude, then, that the model captures all the phys
ingredients involved in the crystallization process: In partic
lar, it points out to the inhomogeneity of the nucleation ph
nomenon~which can arise because of the structure of t
amorphous material itself, or because of defects at
substrate-material interface, for instance! as the key feature
governing the crystallization kinetics and the resulting gra
textures. In view of this, we propose this model, very une
pensive in terms of computing time, as a versatile way
incorporate other physical ingredients as boundary mig
tion, preferential grain growth or diffusion-controlled
growth, which will be the aim of further work. Finally, from
the experimental perspective, it has to be mentioned that
model should be able to explain and predict some resu
Predictions can be made by means ofn8, controlled by
changing the annealing temperature~see Sec. III E!, andc by
ion implantation of nucleation centers, or by some induc
impurities or defects on the sample substrate. Some orde
distributions of defects can be induced by ion implantati
with an appropriate mask, which can be trivially introduce
in our model. These ideas call for further experimental wo
in order to confirm the validity of our model.
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FIG. 16. Self-consistency of Eq.~19! with c51 ~homogeneous
nucleation!. (s) Simulation; solid line: exponential fit which gives
an activation energyEa52(En2Eg)/351.2660.01, consistent
with En55.1 eV andEg53.2 eV.
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